Design of a Polarization-Independent Dual-Band Electromagnetically Induced Transparency-Like Metamaterial

Main Article Content

O. Demirkap
F. Bagci
http://orcid.org/0000-0002-5266-5413
A. E. Yilmaz
B. Akaoglu

Abstract

In this study, the classical analog of single and dual-band electromagnetically induced transparency is demonstrated with a four-fold symmetric metamaterial consisting of a Minkowski fractal ring resonator surrounded by a square ring resonator. The proposed metamaterials show high transmission ratios at the polarization independent resonances, as confirmed by the applied two different numerical methods. Delay-bandwidth products are found to be 0.34 and 0.61 at the resonances of the dual-band metamaterial. The peak frequencies and transmission ratios maintain also for oblique angle of incidences. These features of the proposed metamaterials are promising for single and multi-band filtering applications as well as for slow light and sensing devices.

Downloads

Download data is not yet available.

Article Details

How to Cite
Demirkap, O., Bagci, F., Yilmaz, A., & Akaoglu, B. (2019). Design of a Polarization-Independent Dual-Band Electromagnetically Induced Transparency-Like Metamaterial. Advanced Electromagnetics, 8(2), 63-70. https://doi.org/10.7716/aem.v8i2.983
Section
Research Articles

References


  1. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Metamaterials and negative refractive index, Science 305(5685): 788−792, 2004.
    View Article

  2. K. Aydin, I. Bulu, E. Ozbay, Subwavelength resolution with a negative-index metamaterial superlens, Appl. Phys. Lett. 90: 254102, 2007.
    View Article

  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, Perfect metamaterial absorber, Phys. Rev. Lett. 100: 207402, 2008.
    View Article

  4. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, Metamaterial analog of electromagnetically induced transparency, Phys. Rev. Lett. 101: 253903, 2008.
    View Article

  5. S. E. Harris, Electromagnetically induced transparency, Phys. Today 50(7): 36−42, 1997.
    View Article

  6. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, C. M. Soukoulis, Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial, Phys. Rev. Lett. 107:043901, 2011.
    View Article

  7. Z. Vafapour, H. Alaei, Achieving a high Q-factor and tunable slow-light via classical electromagnetically induced transparency (CI-EIT) in metamaterials, Plasmonics 12: 479−488, 2017.
    View Article

  8. Z. G. Dong, H. Liu, J. X. Cao, T. Li, S. M. Wang, S. N. Zhu, X. Zhang, Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials, Appl. Phys. Lett. 97: 114101, 2010.
    View Article

  9. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, C. M. Soukoulis, Planar designs for electromagnetically induced transparency in metamaterials, Opt. Express 17(7): 5595−5605, 2009.
    View Article

  10. X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, W. L. Zhang, Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode, Appl. Phys. Lett. 100: 131101, 2012.
    View Article

  11. F.-Y. Meng, Q. Wu, D. Erni, K. Wu, and J.-C. Lee, Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor, IEEE Trans. Microwave Theory Tech. 60(10): 3013–3022, 2012.
    View Article

  12. W. Wang, L. Zhang, K. Fang, Y. Zhang, Experimental study of EIT-Like phenomenon in a metamaterial plasma waveguide, AEM 1(3): 61 – 63, 2012.
    View Article

  13. F. Bagci, B. Akaoglu, A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product, J. Appl. Phys. 123: 173101, 2018.
    View Article

  14. M. P. Hokmabadi, J.-H. Kim, E. Rivera, P. Kung, and S. M. Kim, Impact of substrate and bright resonances on group velocity in metamaterial without dark resonator, Sci. Rep. 5: 14373, 2015.
    View Article

  15. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, Highly dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling, Opt. Express 19(22): 21652–21657, 2011.
    View Article

  16. L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, C. M. Soukoulis, Large group delay in a microwave metamaterial analogue of electromagnetically induced transparency, Appl. Phys. Lett. 97: 241904, 2010.
    View Article

  17. H. Li, S. Liu, S. Liu, S. Wang, H. Zhang, B. Bian, X.-K. Kong, Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance, Appl. Phys. Lett. 106: 114101, 2015.
    View Article