Couplonics Of Cyclic Ternary Systems: From Coupled Periodic Waveguides To Discrete Photonic Crystals

Main Article Content

Y. G. Boucher

Abstract

In the context of coupled periodic waveguides, "couplonics" refers to the rigorous equivalence between continuous wave coupling and localized interactions. We extend it here to a cyclic ternary system, looked upon as the simplest discrete photonic crystal with actual periodic boundary conditions. A linear decomposition on a supermode basis enables one to reduce the original sixwave problem to three independent two-wave distributed Bragg reflectors (or 1D PC).

Downloads

Download data is not yet available.

Article Details

How to Cite
Boucher, Y. G. (2013). Couplonics Of Cyclic Ternary Systems: From Coupled Periodic Waveguides To Discrete Photonic Crystals. Advanced Electromagnetics, 2(1), 55-58. https://doi.org/10.7716/aem.v2i1.83
Section
Research Articles

References


  1. S. Boscolo, M. Midrio, C. G. Someda, Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides, IEEE J. Quantum Elec-tron., Vol. 38 (1), 47-53, 2002.
    View Article

  2. J. Zimmermann, M. Kamp, A. Forchel, R. März, Pho-tonic crystal waveguide directional couplers as wave-length selective optical filters, Optics Comm., Vol. 230, 387-392, 2004.
    View Article

  3. Y. G. Boucher, Fundamentals of Couplonics, Proc. SPIE Photonics Europe, Strasbourg, France, Vol. 6182, 61821E, 2006.

  4. Y. G. Boucher, A. V. Lavrinenko, D.N. Chigrin, Out-of-phase Coupled Periodic Waveguides: a "couplonic" ap-proach, Optical Quantum Electron., Vol. 39, No. 10-11, 837-847, 2007.
    View Article

  5. L. Le Floc'h, V. Quintard, J.-F. Favennec, Y. Boucher, Spectral Properties of a Periodic N×N Network of Inter-connected Transmission Lines, Microwave Optical Technol. Lett., Vol. 37 (4), 255-259, 2003.
    View Article

  6. A. A. Barybin and V. A. Dmitriev, Modern Electro-dynamics and Coupled-Mode Theory: Application to Guided-Wave Optics, Rinton Press, 2002.

  7. A. Yariv and P. Yeh, Optical Waves in Crystals, Wiley, New York, 1984.

  8. N. Matuschek, F.X. Kärtner, U.Keller, Exact Coupled-Mode Theories for Multilayer Interference Coatings with Arbitrary Strong Index Modulations, IEEE J. Quantum Electron., Vol. 33 (3), 295-302, 1997.
    View Article

  9. Y. G. Boucher, L. Le Floc'h, V. Quintard, J.-F. Faven-nec, "Canonical alpinism" and "canonical surf-riding": a universal tool for normalised parametric analysis of one-dimensional periodic structures, Optical and Quan-tum Electronics, Vol. 38 (1-3), 203-207, 2006.
    View Article

  10. H. Kogelnik, C.V. Shank, Coupled-Wave Theory of Distributed Feedback Lasers, J. Appl. Phys., Vol. 43, 2327-2335, 1972.
    View Article

  11. N. Belabas, S. Bouchoule, I. Sagnes, J.A. Levenson, C. Minot, J.-M. Moison, Confining light flow in weakly coupled waveguide arrays by structuring the coupling constant: towards discrete diffractive optics, Opt. Expr., Vol. 17 (5), 3148-3156, 2009.
    View Article

  12. E. Feigenbaum, H.A. Atwater, Resonant Guided Wave Networks, Phys. Rev. Lett. Vol. 104, 147402, 2010.
    View Article