Design of Non-Uniformly Spaced Circular Arrays of Parasitic Dipoles for Lower Side Lobe Level with Maximum Directivity Circular Arrays of Parasitic Dipoles for Lower Side Lobe Level with Maximum Directivity

Main Article Content

H. Patidar G. K. Mahanti


This paper presents a new approach for circular array of parasitic dipoles composed by one active dipole for reduction of side lobe level with maximum directivity including mutual coupling. The desired goal is obtained by changing the spacing between the parasitic elements and length of the parasitic elements while the position and length of driven element is fixed. In addition to it, reflection coefficient (RC) of the driven element is kept closer to the specified value. Matlab based method of moment code is used to evaluate the performance of circular antenna designs generated by QPSO algorithm. Two examples are presented to show the effectiveness of this proposed approach.  

| Abstract  : 58 | PDF  : 31 |

Download Statistics


Download data is not yet available.

Article Details

How to Cite
Patidar, H., & Mahanti, G. (2018, February 10). Design of Non-Uniformly Spaced Circular Arrays of Parasitic Dipoles for Lower Side Lobe Level with Maximum Directivity. Advanced Electromagnetics, 7(1), 51-56.

  1. R. S. Elliott, Antenna Theory and Design, Revised Edition. New Jersey: IEEE press, 2003
    View Article

  2. M. I. Dessouky, H. A. Sharshar, Y. A. Albagory, "Efficient sidelobe reduction technique for small-sized concentric circular arrays" Prog. In Electromagn. Res., vol.65, 187-200, 2006.

  3. S.J. Blank and M. F. Hutt, "On the empirical optimization of antenna arrays" Antennas and Propagation Magazine, IEEE, vol.47 (2), 58-67, 2005.
    View Article

  4. M. A. Panduro, A.L. Mendez, R. Dominguez, G. Romero, "Design of non-uniform antenna arrays for side lobe reduction using the method of genetic algorithm" Int. J. Electron. Commun. (AEU), vol.60 (7), 713-717, 2006.
    View Article

  5. M. Rattan, M. S. Patterh, B. S. Sohi, "Optimization of circular antenna arrays of isotropic radiators using simulated annealing" Int. J. Microw. Wirel. Technol., vol.1(5), 441-446, 2009.
    View Article

  6. U. Singh, T. S. Kamal, "Design of non-uniformcircular antenna arrays using biogeography-based optimization" J. Microw. Antenna Propag., IET, vol.5 (11), 1365-1370, 2011.

  7. H. Wu, C. Liu, X. Xie, "Pattern Synthesis of Planar Nonuniform Circular Antenna Arrays Using a Chaotic Adaptive Invasive Weed Optimization Algorithm" Mathematical Problems in Engineering, vol. 2014, Article ID 575860, 1-13, 2014.

  8. G. Ram, D. Mandal, R. Kar, S. P. Ghoshal, "Circular and concentric circular antenna array synthesis using cat swarm optimization" IETE Technical Review, vol. 32 (3), 204-217, 2015.
    View Article

  9. M. Shihab, Y. Najjar, N. Dib, M. Khodier, "Design of non-uniform circular antenna arrays using particle swarm optimization" Journal of Electrical Engineering, vol.59 (4), 216-220, 2008.

  10. P. Ghosh, J. Banerjee, S. Das, S. S. Chaudhury, "Design of non-uniform circular antenna arrays an evolutionary algorithm based approach" Progress In Electromagnetics Research B, vol. 43, 333-354, 2012.
    View Article

  11. V. S. S. S. C. Vedula, S. R. C. Paladuga, M. R. Prithvi, "Synthesis of circular array antenna for side lobe level and aperture size control using flower pollination algorithm" International Journal of Antennas and Propagation, vol. 2015, Article ID 819712, 1-9, 2015.

  12. J. A. Rodriguez, A. Trastoy, J. C. Bregains, F. Ares, G. Franceschetti, "Beam reconfiguration of linear arrays using parasitic elements" Electron. Lett, vol. 42(3), 131–133, 2006.
    View Article

  13. J. A. Rodriguez-Gonzalez, F. Ares-Pena, "Design of planar arrays composed by an active dipole above a ground plane with parasitic elements" Progress In Electromagnetics Research, vol.119, 265-277, 2011.
    View Article

  14. R. F. Harrington, "Origin and development of the Method of Moments for field computation" IEEE Antennas and Propagation Mag., 32(3), 31-35, 1990.
    View Article

  15. R.F. Harrington, "Matrix methods for field problems" Proc. IEEE, 55 (2), 136-149, 1967.
    View Article

  16. S. J. Orfanidis, Electromagnetic waves and antennas, Ch. 21, 2003

  17. J. Sun, W. Fang, X. Wu, V. Palade, W. Xu, "Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection" Evolutionary Computation, vol. 20(3), 349–393, 2012.
    View Article

  18. J. Sun, W. Fang, V. Palade, X. Wu, W. Xu, "Quantum behaved particle swarm optimization with Gaussian distributed local attractor point" J. Appl. Math. Comput., vol. 218, 3763–3775, 2011.
    View Article

  19. R. Muralidharan, A. Vallavaraj, G.K. Mahanti, A. Mahanti, "QPSO versus BSA for failure correction of linear array of mutually coupled parallel dipole antennas with fixed side lobe level and VSWR", Advances in Electrical Engineering, volume 2014, 1-7, Article ID 858290, 2014.

  20. H. Patidar, G.K. Mahanti, R. Muralidharan "Quantum particle swarm optimization for synthesis of non-uniformly spaced linear arrays with broadband frequency invariant pattern", Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 16 (3), 602-614, 2017.
    View Article

  21. H. Patidar, G.K. Mahanti, R. Muralidharan "Synthesis of non-uniformly spaced linear array of unequal length parallel dipole antennas for impedance matching using QPSO", International Journal of Microwave and Optical Technology, vol.12(3), 172-181, 2017.

  22. H. Patidar, and G.K.Mahanti, "Comparison of evolutionary algorithms for synthesis of non-uniformly spaced linear array of unequal length parallel dipole antennas for impedance matching with low side lobe level" Journal of Telecommunication, Electronic and Computer Engineering, vol.9(3), 121-127, 2017.