Application of the Mathieu’s equation for a design of a photonic crystal supporting surface electromagnetic waves

Main Article Content

E. Rostova
G. Dietler
S. K. Sekatskii

Abstract

Nowadays, unique characteristics of surface electromagnetic waves, particularly, surface plasmons supported by a specially designed photonic crystal find numerous applications. We propose to exploit an evident analogy between such a photonic crystal and a structure with a sine-modulated refractive index. The light propagation inside the latter is described by the famous Mathieu’s differential equation. This application of the Mathieu’s equation can be useful for a design of multilayer structures, and also for fundamental understanding of electromagnetic phenomena in inhomogeneous media.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rostova, E., Dietler, G., & Sekatskii, S. (2015). Application of the Mathieu’s equation for a design of a photonic crystal supporting surface electromagnetic waves. Advanced Electromagnetics, 4(3), 17-24. https://doi.org/10.7716/aem.v4i3.321
Section
Research Articles

References


  1. E. Yablonovitch, Photonic band-gap structures, J. Opt. Soc. Am. B, Vol. 10, No. 2, 283–295, 1993.
    View Article

  2. P. Yeh, A. Yariv and C.S. Hong, Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am., Vol. 67, No. 4, 423–438, 1977.
    View Article

  3. J.A. Arnaud and A.A.M. Saleh, Guidance of surface waves by multilayer coatings, Appl. Opt., Vol. 13, No. 10, 2343–2345, 1974.
    View Article

  4. P. Yeh, A.Yariv and A.Y. Cho, Optical surface waves in periodic layered media, Appl. Phys. Lett., Vol. 32, No. 2, 104–105, 1978.
    View Article

  5. W.M. Robertson and M.S. May, Surface electromagnetic waves on one-dimensional photonic band gap arrays, Appl. Phys. Lett., Vol. 74, No. 13, 1800–1802, 1999.
    View Article

  6. A. Shinn and W.M. Robertson, Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material, Sensor Actuat. B-Chem., Vol. 105, 360–364, 2005.

  7. V.N. Konopsky and E.V. Alieva, Photonic crystal surface waves for optical biosensors, Anal. Chem., Vol. 79, No. 12, 4729–4735, 2007.
    View Article

  8. V.N. Konopsky, and E.V. Alieva, A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index, Biosens. Bioelectron., Vol. 25, 1212–1216, 2010.
    View Article

  9. Y. Guo, J.Y. Ye, C. Divin, B. Huang, T.P. Thomas, J.R. Baker and T.B. Norris, Real-time biomolecular binding detection using a sensitive photonic crystal biosensor, Anal. Chem. Vol. 82, No. 12, 5211–5218, 2010.
    View Article

  10. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis and E. Descrovi, Real time secondary antibody detection by means of silicon-based multilayers sustaining Bloch surface waves, Sensor Actuat. B-Chem., Vol. 161, 1046 – 1052, 2012.

  11. A. Farmer, A.C. Friedli, S.M. Wright, W.M. Robertson, Biosensing using surface electromagnetic waves in photonic band gap multilayers, Sensor Actuat. B-Chem., Vol. 173, 79–84, 2012.

  12. V.N. Konopsky, D.V. Basmanov, E.V. Alieva, S.K. Sekatskii and G. Dietler, Size-dependent hydrogen uptake behavior of Pd nanoparticles revealed by photonic crystal surface waves, Appl. Phys. Lett., Vol. 100, 83-108, 2012.
    View Article

  13. V.N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii and G. Dietler, Photonic Crystal Biosensor based on Optical Surface Waves, Sensors, Vol.13, 2566 – 2578, 2013.
    View Article

  14. B.N. Zaitsev, F. Benedetti, A.G. Mikhaylov, D.V. Korneev, S. K. Sekatskii, T. Karakouz, P.A. Belavin, N.A. Netesova, E.V. Protopopova, S.N. Konovalova, G. Dietler and V.B. Loktev. Force-induced globule-coil transition in Laminin Binding Protein and its role for viral – cell membrane fusion, J. Mol. Recognit., Vol. 27, No. 12, 727 – 738, 2014.
    View Article

  15. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici and F. Michelotti, Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors, Sensor Actuat. B-Chem., Vol. 174, 292–298, 2012.

  16. V.N. Konopsky and E.V. Alieva, Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface, Phys. Rev. Lett., Vol. 97, No. 25, 253904, 2006.
    View Article

  17. S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

  18. D. Sarid, Long-Range Surface-Plasma Waves on Very Thin Metal Films, Phys. Rev. Lett., Vol. 47, No. 26, 1927-1930, 1981.
    View Article

  19. J. J. Burke, G. I. Stegeman, and T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films, Phys. Rev. B, Vol. 33, No. 3, 221-223, 1986.
    View Article

  20. V.N. Konopsky, D.V. Basmanov, E.A. Alieva, D.I. Dolgy, E.D. Olshansky, S.K. Sekatskii and G. Dietler, Registration of long-range surface plasmon resonance by angle-scattering feedback and its implementation for optical hydrogen sensing, New J. Phys., Vol. 11, 063049, 2009.

  21. E.V. Alieva, V.N. Konopsky, D.V. Basmanov, S.K. Sekatskii, and G. Dietler, Blue surface plasmon propagation along thin gold film – gas interface and its use for sensitive nitrogen dioxide detection, Opt. Commun., Vol. 309, 148 – 152, 2013.
    View Article

  22. V.N. Konopsky, Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces, New J. Phys., Vol. 12, 093006, 2010.
    View Article

  23. N.W. McLachlan, Theory and application of Mathieu functions, Dover, New York, 1964.

  24. J.A. Stratton, Electromagnetic theory, McGraw-Hill, New York, 1941, p. 360.

  25. R.E. Langer, The solutions of Mathieu equation with a complex variable and at least one parameter large, Trans. Am. Math. Soc., Vol. 36, No. 3, 637-695, 1934.
    View Article

  26. M.J. Richardson, Solution of the Mathieu Equation in the WKB Approximation, Am. J. Phys., Vol. 39, 560-565, 1971.
    View Article