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Abstract

The electromagnetic response of the electrically small
conical wire coil as a chiral inclusion is described. An
existing model of the helical coil wire inclusion is extended
to model the conical coil wire inclusion, using the Method
of Moments (MoM) to determine the dominant resonant
circuit impedance of the inclusion. Material parameters are
determined using mixing relations with polarizability
coefficients expressed for the conical coil inclusion
geometry. The polarization conversion of a dielectric slab
loaded with conical coil inclusions is predicted and
compared to simulated results using a forward scattering
technique.
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1. Introduction

he modeling and synthesis of complex electromagnetic
materials has received a great amount of interest during
recent decades [1, 2, 3]. Electromagnetic components and
systems have been developed possessing unique properties
afforded by the development of structured arrays of planar,
or randomly oriented three-dimensional, inclusions [4, 5, 6].
In this document we investigate the behavior of electrically
small multi-turn conical coil wire inclusions as a geometric
extension of the common multi-turn helical coil wire
inclusion [1, 7]. In order to estimate the macroscopic
properties of Pasteur media using conical coil inclusions we
modify an approach set forth by Bahr and Clausing [7, 8].
The potential for tuning multiple material chiral resonances
using the conical coil inclusion geometry is demonstrated
via the predicted polarization conversion of a chiral slab in
free-space.
The electromagnetic response of randomly oriented
helical inclusions within a host medium is that of a Pasteur
Medium with the following material constitutive relations

[1]:
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The parameter x characterizes the degree of handedness of
the material and is called the chirality parameter. The host
permittivity is provided by e, along with the host
permeability as up. The effective scalar dielectric
permittivity and permeability of the artificial material are
given by the symbols ¢ and u respectively. The average

vector fields in the media are given by E.H.D and B.

2. Theory: Effective Medium Parameters

2.1. Polarizability of conical coil inclusion

The dimensions of a 3-turn conical coil inclusion are
identified in Fig. 1 below. The pitch, P, is the spacing
between turns of the coil and is held constant in this work;
the radius of each coil is identified by a; with the zeroth turn
initial radius ay identified in the figure; the conical angle is
taken relative to the axis of symmetry of the coil and is
labelled as 6.

Figure 1: Dimensions of a Right-Handed 3-Turn Conical
Coil Inclusion

In order to derive relations for the dipole moments of the
conical coil, expressions for the induced emfs for the conical
coil geometry must be determined. The induced
electromotive force (emf) arising from the incident electric



field is given by Faraday’s Law:

emf, :§E-df 3)
Since the incident electric field is parallel to only that
vector component along the coil axis we evaluate this
relation to yield:
emf. = +NPE, “)
where N is the number of turns, P the coil pitch (distance
between wires of neighboring turns), Ey is the excitation
electric field incident upon the coil, and the sign is
determined by the handedness of the coil (- left or + right).
Faraday’s Law is now expressed as follows for evaluation
of this case involving an incident H-Field. Note that we now

express the induced emf in terms of integrating the magnetic
flux density over the coil cross section:

- - 0B
eme:j:E-dI —§—-ds )
c s ot
Assuming a uniform cross section for a multi-turn helical
coil of radius a, with Hy being the excitation magnetic field
incident upon the coil, we may evaluate the previous relation

to yield:

emf,, =—ja)N(7z-a2)/,zhH0 (6)

The emf will increase for a conical coil as the interior
cone angle increases since the cross-sectional area
intersected by the magnetic flux will increase. We may
modify N to provide an estimate for this increased flux
linkage by introducing N’ as defined below. Notice that, in
the case of a helical coil, the following relation is equal to
the number of turns of the coil but that N’ becomes larger
than N as the cone angle becomes greater than zero.

N-I
N ’ — Z avg (7)
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where the area A of the i" loop is defined as:
avg
_ 2
A, =78 ®)
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Although the actual radii of a conical coil changes
continuously over the full length of wire we will make use
of an approximation and assume a constant-radius-per-turn
using the average radius for each full 2n coil turn. This
approximation allows easy evaluation of estimated
impedance contributions in terms of a superposition of
elemental loops and dipoles later in this report, but is an
estimate of the increase in effective turns N’. Our evaluation
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of the emf may be expressed for a conical helix as follows
with @, representing the average coil radius for the first
avg

(smallest) coil turn:

emf, z—(ja))N’(fr-aO2 )
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From (6)-(9), expressions for the dipole moments may be
created both in terms of the electric and magnetic dipole
moments as well as in terms of estimates of conical coil
characteristic impedance Zc (10) [8]. In [7] the Pme, term is
arrived at by modeling the helical coil as a flat disc with the
radius of the coil, for the conical coil this term is
approximated in a similar manner by using the mean conical
coil radius as amean.
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The polarizability coefficients are then obtained by scaling
the dipole moments by the impressed field intensity:
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2.2. Conical coil inclusion characteristic impedance

For a conical-coil we will represent the total coil impedance
as Zc, which is expressed in terms of a series of impedance
components within the Bahr & Clausing model as follows

[7]:

ZC = Rdc + ch +Zlc + vac (12)

The energy lost due to dissipation of near, non-radiating,
fields is expressed by the term Rg. The second term
estimates the average mutual impedance Z arising due to
the nearest neighboring inclusions using the concept of the
superposition of elemental dipoles and loops. The third term
in Z¢ is the circuit impedance Zj, which is determined by
modeling the inclusion as a perfect electrically conducting
(PEC) center-fed electrically-small wire antenna embedded
within the host medium and evaluated using the Method of
Moments (MoM). Evaluation of Zj, in this manner will
include a measure of the antenna radiation resistance as
well. This differs from [7] wherein Z,; is evaluated for the



center-fed helical coil modeled as two open-circuited
transmission lines and the radiation resistance is calculated
as a separate term in the total coil impedance. The surface
resistivity of the inclusion wire material gives rise to the
term R,.. We present the expressions for each of the terms
describing the total conical coil impedance Z¢, except for the
transmission line contribution Z;; which is obtained using the
Method of Moments [8].

In [7] the authors use the assumption that the dissipation
arises in the helical coil due only to power lost through the
ends of the wire, with the resulting relation being only
dependent upon the separation distance of the wire ends.
Using these same assumptions we leave the expression
presented in [7] changed only slightly to include the effect
of the conical coil angle on the wire ends separation
distance.

. a 3
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(13)

where & is the complex permittivity of the host medium, &,

is the imaginary part of the host permittivity, k, is the

h
imaginary part of the complex wave number for the wave
propagating in the surrounding host medium, and 6 is the
conical coil angle.

For the conical coil mutual impedance we assume this
problem is separable into independent dipole and loop
contributions and combine results to arrive at an expression
of the total conical coil mutual impedance term [8]. S is the
inclusion separation distance, determined from the inclusion
density, and f is the propagation constant.
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The component of inclusion resistance that relates to the
wire resistivity is given by the following expression:

s)

where Rj is the surface resistivity of the wire per unit length,
b is the diameter of the wire and d,, is the total wire length.

2.3. Circuit impedance of conical coil inclusion using
Method of Moments

From [7] we know that the helical coil may be well
represented by a center-fed transmission line open-circuited
at both ends. We have attempted to generalize the approach
in [7] for use with a conical coil by evaluating the circuit
impedance using the Method of Moments. The feed point of
the structure is a delta-gap voltage source located at % the
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height of the coil (Fig. 2). As dissipation due to wire
resistance is estimated using (13) the wire in the MoM
simulations is modeled as a perfect electric conductor
(PEC). Our implementation of the MoM is based very
closely upon the presentation provided in [9] and was
developed by the authors in Matlab. By retaining only the
first two terms of a Maclaurin series expansion of the
Green’s function in a MoM representation, it is assumed that
the wire is electrically thin relative to the wavelength, this is
the “thin-wire” approximation. One aspect of this
approximation is that radial current contributions in each
wire segment are ignored [9].

Feed Point

Figure 2: 3-Turn Conical Coil Illustrating Impedance
Evaluation as Equivalent Electrically Small Antenna

2.4. Material modeling using mixing relations

The goal is the estimation of the macroscopic material
parameters via implementation of mixing relations. The
mixing relations may be thought of as the approximations
employed to bridge the microscopic inclusion response to
the macroscopic material response. Discussions of the
derivation of mixing relations for chiral media, and
corresponding limits of validity, are found in [10, 11, 12].
The polarizability relations are expressed in terms of the
electric and magnetic dipole moments using the previous
relations (10) and (11) and the inclusion density n [1, 7].
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2.5. Electromagnetic response of Pasteur slab

Consider a slab of Pasteur material (Region 2) sandwiched
between two simple isotropic spaces (Regions 1 and 3) as
pictured in Fig. 3 [1]. For this work we assume Regions 1
and 3 are free-space [1, 8]. In [7] it is demonstrated that the
inverse circular polarization ratio, ¢, gives us the ratio of the
left-handed polarized (LHP) and right-handed polarized
(RHP) waves at the exit of a chiral slab.
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Figure 3: Pasteur Slab Sandwiched Between Two
Isotropic Half-Spaces [1]

The LHP and RHP propagation constants /,,, and /g,

are expressed as follows: where d is the slab thickness, g,
and g, are the host permeability and permittivity, £, and

&, are the chiral material permeability and permittivity

relative to the host medium, ¢ is the radian frequency, and
x the chirality parameter [7].

l//[LHj =20\ &, ( M &y i’()d @n

RH

The factor R is the following ratio of chiral wave
impedance, 77, , to the wave impedance of the medium

external to the slab, 77,, which is defined as free-space in
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this example.

e — 7o

R =
e + 17,

(22)

The tilt angle, 7, of the elliptical wave at the exit surface
of the slab may be determined as half of the angle, 8;, which
is the phase angle of the complex representation of  in (20)

[7].

T= 5 t9q (23)

The axial ratio, AR, may also be expressed in terms of the
inverse circular polarization ratio [7]:

1+a]
AR = (24)
1o
3. Results: Pasteur media using conical coil
inclusions
The input impedance minima of the transmission-

line/antenna representation of a chiral wire coil inclusion
defines the regions of large chirality, and hence polarization
conversion [7]. We begin by examining the simulated
complex input impedance of a conical coil versus conical
angle with the coil possessing the following dimensions:
minimum coil radius of 8,=0.625mm, helix pitch of
P=0.667mm, wire diameter of b=0.1524mm, number of
turns N=3, Copper Wire immersed in a host material of Dow
Corning 3110 RTV rubber (e, = 2.95-0.07) with and
inclusion density of n=10-10° m-3 [7, 8].

3.1. Circuit impedance of the conical coil inclusion
versus conical angle

In the following figure we overlay the magnitudes of the
conical coil antenna input impedance (Z) as determined
using the Method-of-Moments. The conical angles examined
are: 0°, 5°, 15° and 30°.

For the 3-turn helical coil, with a 0° conical angle, we
note that the location of the 2nd impedance minimum is at
nearly three times the frequency of the fundamental
resonance near 21 GHz, and with the impedance maximum
occurring at approximately twice the fundamental resonance
frequency. However, as the conical angle increases
additional impedance maxima and minima appear over the
observed frequency bandwidth.

For a conical angle of 30° we find the fundamental
resonance, which is determined primarily by the overall wire
length, has shifted downward from just over 7 GHz to nearly
3 GHz and the relative relationship of the impedance
maxima and minima has changed dramatically when



compared to that for a helical coil. For the 30° coil we now
find that the 2nd impedance minimum is closer to twice the
fundamental resonance frequency. The introduction of the
conical angle has created this new impedance resonance
near twice the fundamental that is not present in the 0°
helical coil. The asymmetry of the conical coil, when
viewed as a center-fed transmission line, provides the
additional resonance formation.
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Figure 4: Magnitude of Conical Coil Z;, Complex Circuit
Impedance at 0°, 5°, 15°, and 30° Conical Angles.

It is important to note that only the transmission line
impedance contribution, Zj, results in resonance
phenomena. However, the other impedance contributions of
of dissipation resistance (Ry), surface resistivity of the
inclusion wire material (Ry,), and mutual impedance (Z,,) all
serve to modify the total conical coil impedance
significantly, with the overall result being an increasing coil
impedance with frequency.

3.2. Material parameters of dielectric slab loaded with
conical coil inclusions

When using mixing relations to model effective material
parameters it is assumed that the electric field remains
uniform throughout the volume of the inclusion, requiring
that the inclusion be electrically small. For a 3-turn 30°
conical coil inclusion of dimensions specified previously in
this report, the volume enveloping the inclusion is
approximately 42:10° m® (estimating sphere radius as
approximately half the coil height). The Rayleigh
requirement for valid use of the mixing relations is kD <1

[1]; where ke is the effective wavenumber in the chiral
medium, and D is the diameter of an imaginary sphere
enclosing the inclusion. The highest frequency to be
modeled using mixing relations for this inclusion, embedded
within a host material of dielectric constant of 2.95-j0.07, is
approximately 14 GHz. Our material results are plotted up to
10 GHz to stay well below this frequency limit.

In the following figure the complex material parameters
for a dielectric slab loaded with conical coil wire inclusions
is presented. The inclusions are of the same design as
presented previously and are repeated here: minimum coil
radius of a8y = 0.625 mm, helix pitch of P = 0.667mm, wire

diameter of b=0.1524mm, number of turns N=3, conical
angle of 6, =30°, with an inclusion density of n=10-10° m>,
immersed in a host material of Dow Corning 3110 RTV
rubber (e, = 2.95-0.07). This inclusion design is the coil
geometry from [7] modified by a 30° conical angle. Note
that the first two material resonances are found to lie within
the Rayleigh criterion, so application of mixing relations is
valid for estimating material parameters at these frequencies.
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Figure 5: Complex Normalized Relative Material

Parameters for Host Loaded with 3-Turn 30° Conical Coils.

In Fig. 5 we see that both the real and imaginary parts of
the effective normalized relative material permittivity
(EpsChiral) and permeability (MuChiral) increase in
magnitude for increasing complex chirality. These effects
are especially pronounced around the chiral resonances
which, in turn, correspond well in frequency with the
impedance minima for each coil as shown previously. Such
deviations in permittivity and permeability have been used
by researchers to design absorbing or polarization
converting materials by carefully dimensioning inclusion
and material parameters [1, 7].

3.3. Axial ratio response of dielectric slab loaded with
conical coil inclusions

To demonstrate tuning of the conical coil fundamental
resonance, and utility of a higher-order resonance, we
present the predicted transmitted axial ratio (AR) for a
dielectric slab loaded with conical coil wire inclusions
illuminated with linearly polarized electromagnetic
radiation. The dimensions of the inclusions, inclusion
density, and chosen host medium, were specified previously
in this paper. The slab thickness was set at 1.9 cm as this
resulted in AR values closest to unity for the first two coil
resonances, determined via trial-and-error.

Results obtained using our method are compared to
results determined wusing the tumble-averaged-forward-
scattering (TAFS) approach [13]. The conical coil was
discretized at the same resolution for both techniques. In the
TAFS approach 500 random orientations of the inclusion
were produced and the complex co-polarized and cross-
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polarized far-fields calculated for two separate incident
orthogonal linearly polarized plane waves [13]. These
averaged far-field results were used to estimate the
polarization conversion at the output of the 1.9 cm thick
slab.

The results in Fig. 6 compare the calculated AR for the
approach developed in this effort versus the TAFS method.
General agreement between the approximate frequency
locations of the two material resonances is displayed. The
TAFS resonance predictions are shifted higher in frequency
than the mixing relation results. The difference in frequency
locations of AR minima between the two approaches was
found to be generally independent of the coil discretization.
The higher frequency resonance is not as pronounced in
terms of polarization conversion and bandwidth for the
TAFS prediction as compared to the MoM/mixing-relation
prediction.
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Figure 6: Predicted Axial Ratio of 1.9 cm Thick Dielectric
Slab Loaded with 3-Turn 30° Conical Coil Inclusions.

- TAFS

One drawback of TAFS is that the approach ignores
inclusion interactions as it is based solely upon the
calculated far-field scattering for a single inclusion averaged
over many randomly selected orientations [13]. The TAFS
approach is also extremely time consuming requiring nearly
5 days of processing when run on a modest Dell M4800
quad-core laptop computer with 8 GB RAM. This is to be
compared to the approach developed in this effort which
required only a few hours to complete. Some disagreement
between the two approaches is expected as parameters
derived via scattering of a plane wave by a single conical
coil is not completely analogous to the mixing relation
approach.

Future work may include use of available commercial
CEM software (e.g. Ansys HFSS) for refining the approach
presented in this report. The creation of a set of chiral slabs
using commercially available small multi-turn conical coils
is also being investigated.

4, Conclusions

In this work we have investigated the electromagnetic
properties of the multi-turn conical wire coil as a chiral
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inclusion within a dielectric host medium. We have provided
expressions for the various impedance components of the
multi-turn conical wire coil via extension of an existing
approach for helical coils [7]. The conical coil wire
inclusion was found to demonstrate the ability of frequency
tuning of impedance minima through variation of conical
angle. Frequencies corresponding to chiral resonances, and
also maximum variation of effective material parameters,
can be designed by appropriate choice of coil dimensions
including the conical angle.

Acknowledgements

The authors would like to thank Dr. Andrew Gatesman for
providing helpful suggestions.

References

[1] LV. Lindell, A.H. Sihvola, S.A. Tretyakov, A.J. Viitanen,
Electromagnetic Waves in Chiral and Bi-lsotropic Media,

Norwood, MA, Artech House, Inc., 1994.

D.K. Kalluri, Electromagnetics of Time Varying Complex
Media: Frequency and Polarization Transformer-2" Edition,
Taylor Francis, CRC Press, April 2010.

R. Marques, F. Martin, Metamaterials with Negative
Parameters: Theory, Design and Microwave Applications.
Wiley Press — Interscience, 2013.

A. Taflove, Computational Electrodynamics: The Finite
Difference Time Domain Method, Norwood, MA, Artech
House, 1995.

T.J. Cui, D. Smith, R. Liu, Metamaterials: Theory, Design
and Applications, Springer-Verlag Publishing, 2010

A. Priou, A. Sihvola, S. Tretyakov, A. Vinogradov, Advances
in Complex Electromagnetic Materials, Springer Science and
Business Media, December 2012.

A.J. Bahr and K.R. Clausing, “An Approximate Model for
Artifical Chiral Material”, IEEE Transactions on Antennas
and Propagation, Vol. 42, No. 12, Dec.,, pp. 1592-1599,
1994.

G.B. DeMartinis, “Chiral Media Using Conical Coil
Inclusions”, D.Eng. Thesis, Department of Electrical and
Computer Engineering, University of Massachusetts Lowell,
Lowell, MA, 2008.

R.F. Harrington, Field Computation by Moment Methods,
Wiley-IEEE Press, May 1993.

[10] A.H. Sihvola and 1.V. Lindell, “Chiral Maxwell-Garnett
Mixing Formula”, IEEE Electronics Letters, Vol. 26, No. 2,
Jan., pp. 118-119, 1990.

[11] AH. Sihvola, “Bi-Isotropic Mixtures”, IEEE Transactions on
Antennas and Propagation, Vol. 40, No. 2, Feb., pp. 188-197,
1990.

[12] A.H. Sihvola, “How Strict are Theoretical Bounds for
Dielectric Properties of Mixtures?”, IEEE Transactions on
Geoscience and Remote Sensing, Vol. 40, No. 4, pp. 880- 886,
2002.

[13] R. Luebbers, H.S. Langdon, F. Hunsberger, C.F. Bohren, and
S. Yoshikawa, “Calculation and Measurement of the Effective
Chirality Parameter of a Composite Material Over a Wide
Frequency Band”, IEEE Transactions on Antennas and
Propagation, Vol. 43, No. 2, Feb., pp. 123-130, 1995.

(9]



