Spectral and Dispersion Properties of Long Period Fiber Grating for Optical Communication Systems

Main Article Content

V. Jain
S. Pawar
S. Kumbhaj
P.K. Sen

Abstract

Present work deals with the analytical study of spectral and dispersion properties of long period fiber grating (LPFG) under linear regime. The standard parameters in the understanding of the optical features of an LPFG have been analyzed using the linear coupling processes such that one can appreciate without going through the cumbersome mathematical treatment of coupled mode equations the basic characteristics of the grating. We have analyze transmittance, phase factor, group delay and group velocity dispersion (GVD) of the LPFG as functions of physical parameters like operating wavelength, grating length, induced index change, and detuning parameter. Special attention is paid to the study of GVD with second and third order dispersion contribution as well as the filter characteristics and delay response of the grating. In case of strong grating, we find that at a particular grating strength the resonance band splits into two bands. Negative group delay for certain values of coupling strength suggested that an LPFG can also be used as dispersion compensator in optical fiber communication.

Downloads

Download data is not yet available.

Article Details

How to Cite
Jain, V., Pawar, S., Kumbhaj, S., & Sen, P. (2018). Spectral and Dispersion Properties of Long Period Fiber Grating for Optical Communication Systems. Advanced Electromagnetics, 7(4), 109-116. https://doi.org/10.7716/aem.v7i4.797
Section
Research Articles

References


  1. A. M. Vengaskar, P. J. Lemaire, V. Bhatia, T. Erdogan, J. E. Sipe, Long-period fiber gratings as band rejection filters, J. Lightwave Techno. 14: 58-65, 1996.
    View Article

  2. R. Singh, E. K. Sharma, Gain flattening by long period gratings in erbium doped fibers, Opt. Comm. 240:123-132, 2004.
    View Article

  3. D. B. Stegall, T. Erdogan, Dispersion control with use of long-period fiber gratings, J. The Optical Society of America A 17:304-312, 2000.
    View Article

  4. J. F. Huang, Y. J. He, Y. L. Lo, Bandwidth analysis of long-period fiber grating for high-order cladding mode and its application to optical add-drop multiplexer, Opt. Eng. 45:125001.1-125001.8, 2006.

  5. B. Ortega, L. Dong, W. F. Liu, J. P. de Sandro, L. Reekie, S. I. Tsypina, R. I. Laming, High-performance optical fiber polarizers based on long-period gratings in birefringent optical fibers, IEEE, Photon.Technol. Lett. 9: 1370-1372, 1997.
    View Article

  6. V. Bhatia, A. M. Vengsarkar, Optical fiber long-period grating sensors, Opt. Lett. 21:692-694, 1996.
    View Article

  7. J. Blows, Y. D. Tang, Gratings written with tripled output of Q-switched Nd:YAG laser, IEEE, Electron. Lett. 36:1837-1839, 2000.
    View Article

  8. M. Fujumaki, Y. Ohki, J. L. Brebner, S. Roorda, Fabrication of long-period optical fibre gratings by use of ion implantation, Opt. Lett. 25: 88-90, 2000.
    View Article

  9. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. Kazansky, K. Hirao, Fabrication of long-period fibre gratings by focused irradiation of infra-red femto-second laser pulses, Opt. Lett. 24:646-648, 2000.
    View Article

  10. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C.Mettler, A. M.Vengsarkar, Long-period fibre grating fabrication with focused CO2 laser beams, IEEE, Electron. Lett. 34:302-303, 1998.
    View Article

  11. E. M. Dianov, V. I. Karpov, A. S. Kurkov, M. V. Grekov, Long period fibre gratings mode-field converters fabricated by thermos diffusion in phosphosilicate fibres, Proc. 24th ECOC, Madrid: Telefonica Espana, pp. 1–3, 1998.

  12. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. Chung, Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress, Opt. Comm. 185:337-342, 2000.
    View Article

  13. G. Rego, O. Okhotnikov, E. Dianov, V. Sulimov, High-temperature stability of long-period fibre gratings using an electric arc, IEEE, J. Lightwave Technol. 19: 1574-1579, 2001.
    View Article

  14. T. Allsop, K. Kalli, K. Zhou, M. Dubov, D. J. Webb, I. Bennion, Long period gratings written into a photonic crystal fibre by a femtosecond laser as directional bend sensors, Optics Comm. 281: 5092-5096, 2008.
    View Article

  15. D. Kowal, G. Statkiewicz-Barabach, P. Mergo, W. Urbanczyk, Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam, Optics Letter 39:2242-2245, 2014.
    View Article

  16. D. Pudo, Eric C. Magi, B. J. Eggleton, Long-period gratings in chalcogenide fibers, Optics Express 14:3763-3766, 2006.
    View Article

  17. I Kag Hwang, S. H. Yun, B. Y. Kim, Long-period fiber gratings based on periodic microbends, Optics Letter 24,1263-1265, 1999.
    View Article

  18. H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, Propagation and optical interaction of guided acoustic waves in two-mode optical fibers, IEEE J. Lightwave Techno. 6:428-436, 1988.
    View Article

  19. Y. Zhao, J. C. Palais, Simulation and characteristics of long-period fibre Bragg grating coherence spectrum, IEEE J. Lightwave Techno. 16:554-561, 1998.
    View Article

  20. I. Navruz, A. Altuncu, Optimization of phase shifted long-period fiber gratings for multiband rejection filters, IEEE J. Lightwave Techno. 26: 2155-2161, 2008.
    View Article

  21. H. Jeong, K. Oh, Enhancement of free spectral range of resonance peaks of a long period fiber grating by controlling material dispersion of cladding modes, Optics Comm. 199:103-110, 2001.
    View Article

  22. Y. Bai, K. S. Chiang, Transmission characteristics of long period waveguide grating couplers Technology, IEEE J. Lightwave Techno. 21: 3399-3405, 2003.

  23. H. J. Patrick, A. D. Kersey, F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction, IEEE J. Lightwave Techno. 16:1606-1612, 1998.
    View Article

  24. K. S. Chiang and Q. Liu, Long-period gratings for application in optical communications, Proc. International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO), Chengdu, China, pp. 128-133, 2006.

  25. V. Rastogi, K. S. Chiang, Long-period gratings in planar optical waveguides, Appl. Opt. 41:6351-6355, 2002.
    View Article

  26. O. Deparis, R. Kiyan, O. Pottiez, and M. Blondel, Bandpass filters based on π-shifted long-period fiber gratings for actively mode-locked erbium fiber lasers, Opt. Lett., 26:1239-1241, 2001.
    View Article

  27. Y. Gu, K. S. Chiang, Effects of average index variation in apodized long-period fiber gratings, Photonic Sensors 32:102-111, 2013.
    View Article

  28. M. Das, K. Thyagarajan, Dispersion compensation in transmission using uniform long period fiber gratings, Optics Comm. 190:159-163, 2001.
    View Article

  29. T. Erdogan, Fiber Grating Spectra, IEEE J. Lightwave Technol., 15:1277-1294, 1997.
    View Article

  30. A. W. Snyder, J. D. Love, Optical Waveguide Theory Chapman and Hall Publishers, 1983.

  31. H. Kogelnik, Filter response of non-uniform almost periodic structures, J. Bell Sys. Tech., 55:109-126,1976.
    View Article

  32. D. Marcuse, Theory of Dielectric Optical waveguides, Academic Publishers, New York, 1991.

  33. L. Poladian, Resonance mode expansions and exact solutions for nonuniform gratings, Phys. Rev. E 54:2963-2975, 1996.
    View Article

  34. G. P. Agrawal, Application of Nonlinear Fiber optics, Academic Press, San Diego, 2001.

  35. J. N. Kutz, B. J. Eggleton, J. B. Stark, R. E. Slusher, Nonlinear Pulse Propagation in Long-Period Fiber Gratings: Theory and Experiment, IEEE Sel. Topics Quantum Electron., 3:1232-1245, 1997.
    View Article

  36. A. Carballar, M. A. Muriel, Phase Reconstruction from Reflectivity in Fiber Bragg Gratings, IEEE J. Lightwave Techno. 15:1314-1322, 1997.
    View Article

  37. V. Jain, S Pawar, S Kumbhaj, P K Sen, Analysis of dispersion characteristics of long period fiber grating, Journal of Physics: Conference Series 755: 012057-012061, 2016.
    View Article