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Abstract
Existence of symmetric complex waves in a metamaterial
dielectric rod and a perfectly conducting cylinder of circu-
lar cross section covered by a concentric layer of metama-
terial, a metamaterial Goubau line, is proved. Analytical in-
vestigation and numerical solution of dispersion equations
reveal several important properties of running waves inher-
ent to open metal-metamaterial waveguides which have not
been reported for waveguides filled with standard media.

1. Introduction
In this study we develop a mathematical model describing
the propagation of radially symmetric surface waves along
a metamaterial dielectric rod (DR) and a perfectly conduct-
ing cylinder of circular cross section covered by a concen-
tric layer of metamaterial, the Goubau line (GL).

The metamaterial is characterized by negative relative
permittivity and permeability and simulates artificial media
of different types [1]. Interaction between electromagnetic
field and metamaterial is expected to produce and is associ-
ated with various phenomena, e.g. negative refraction [2].
In this work, we discover several such phenomena which
have not been reported for waveguides filled with standard
media having positive permittivity.

Metamaterials are lossy dispersive media characterized
by generally complex permittivity and permeability varying
w.r.t. frequency, so that permeability and the real and imag-
inary parts of permittivity take negative and positive values
and vanish at certain frequency points [1]–[3]. However, at
certain frequency intervals these dependence may be virtu-
ally constant [3] so that one may ignore the dispersion of
a metamaterial. In this work, we study such cases of con-
stant negative permittivity and permeability in a prescribed
frequency range. This is the first and necessary step to pro-
ceed to the analysis of dispersive lossy metamaterial open
waveguides.

Investigation of the wave propagation in open metal–
metamaterial waveguides requires elaboration of specific
mathematical and numerical methods based on (i) proper
reformulation of the corresponding boundary eigenvalue
problems equipped with appropriate conditions at infinity
that enable one to take into account all possible types of
real (and complex) waves, (ii) investigation of the bound-
ary eigenvalue problem spectra, and (iii) analysis of dis-

persion equations (DEs) using the theory of functions of
several complex variables and perturbation techniques. In
the case of a metamaterial cover, it is necessary to recon-
sider properties of the functions entering DEs so that the
DE analysis becomes a central point of the present work.
This analysis is performed using the results obtained ear-
lier in [4] and [5] for the real and complex symmetric and
nonsymmetric waves in ’standard’ GL and DR. Numerical
algorithms and codes are created for calculating propaga-
tion constants and fields in the considered metalmetamate-
rial waveguide and the results of sample computations and
numerical modeling are presented.

It should be noted that rigorous mathematical proof of
the existence of real and complex waves in metamaterial
DR and GL remains, to the best of our knowledge, one of
unsolved problems of the theory of electromagnetic wave
propagation in open waveguides. These gaps in the theory
have driven us to elaborate in this work appropriate math-
ematical methods and complete the proofs beginning from
basic open metal-dielectric structures, DR and GL.

Give a short outline of this work: in Section 1 we for-
mulate the problems under study. In Section 2 we summa-
rize the results for symmetric surface waves in DR and GL
filled with ’standard’ dielectrics. In Sections 3 and 4 we
prove the existence and investigate basic properties of sym-
metric surface waves in metamaterial DR and GL using the
methods [4], [5] and [8] by investigating roots of the DEs
that describe symmetric waves w.r.t. all the problem param-
eters.

2. Statement
Consider the propagation of symmetric waves described in
terms of nontrivial solutions to homogeneous Maxwell’s
equations in DR and GL depicted in Fig. 1 where all the
geometric parameters are defined. The media filling DR
and GL situated in vacuum are assumed to be metamate-
rials having negative constitutive parameters (permittivity
and permeability) ε < 0 and µ < 0, so that the optical
quantity, the medium refractive index n = −√εµ < 0 and
n2 = εµ > 0 and longitudial wavenumber ks of the sym-
metric waves

k2
s =

{
k2

0 − β2, r > a (DR) or r > b (GL),
k2

0n
2 − β2, r < a (DR) or a < r < b (GL),



Figure 1: Dielectric rod and Goubau line.

Here, β is the wave propagation constant (spectral pa-
rameter), and k0 is the free-space wavenumber. The sym-
metric (azimuthally-independent) waves have the nonzero
components

H = [0, H2(r, z), 0], E = [E1(r, z), 0, E3(r, z)], (1)

E1 = − iβ
k2
s

dφ

dr
e−iβz, E3 = φ(r)e−iβz,

H2 = − iωε
k2
s

dφ

dr
e−iβz,

(2)

where φ solves boundary eigenvalue problems

Lφ ≡ 1

r

d

dr
(r
dφ

dr
) + k2

sφ = 0, r > 0,

[φ]|r=a =

[
ε

k2
s

dφ

dr

]∣∣∣∣
r=a

= 0,

(3)

for DR and

Lφ = 0, r > a, φ(a) = 0, [φ]|r=b =

=

[
ε

k2
s

dφ

dr

]∣∣∣∣
r=b

= 0
(4)

for GL. Problems (3) and (4) must be complemented with
the conditions at infinity: the condition

φ(r)→ 0, r →∞ (5)

gives rise to symmetric surface waves in DR and GL de-
scribed in terms of real-valued quantities; in particular, the
boundary operators in (3) are defined (as real-valued func-
tions of a real variable γ or λ = γ2) on a certain interval
I specified below. In [5] it is proved that the spectrum of
surface waves in DR and GL filled with homogeneous di-
electric may be empty, or they may consist of several (real)
points located on this interval.

Make the following designations:

γ =
β

k0
, κ = k0a, x = κ

√
n2 − γ2, u = κ

√
n2 − 1,

w =
√
u2 − x2 = κ

√
γ2 − 1.

For surface waves, potential function φ(r) can be repre-
sented, according to the conditions at infinity (5), as

φ(r) =

{
AK0( raw), r > a,
BJ0( rax), r < a,

(DR),

φ(r) =


AK0( raw), r > b,
B

Y0(x)

[
J0( rax)Y0(x)− Y0( rax)J0(x)

]
,

a < r < b (GL).

(6)

Here, Jk(x), Yk(x), K0(x), and K1(x) denote, respec-
tively, the Bessel and Neumann functions of the order k =
0, 1 and the McDonald functions. The form of the solutions
in unbounded regions is governed by asymptotic represen-
tation at large |z| of McDonald function K0(z).

To investigate complex symmetric waves complement
(3) with a condition at infinity [7]

φ(r) = AH
(1)
0 (rw̃), r > a (DR) or r > b (GL),

w̃ =
i

a

√
u2 − x2 = k0

√
1− γ2.

(7)

Here γ may be complex quantity and w̃ is the transverse
wavenumber of the medium outside DR (vacuum).

In view of the logarithmic singularity of the Hankel
function H(1)

0 (z) at z = 0, eigenvalue problem (3), (7) and
(4), (7) are considered, following [7] at γ ∈ Λ, where Λ
is the multi-sheet Riemann surface of the function f(γ) =

ln
√

1− γ2.
Denote by Λ0 the principal (’proper’) sheet of this Rie-

mann surface specified by the condition =w ≥ 0.
List the properties [9] of symmetric wave spectrum in

a DR filled with homogeneous dielectric medium having
constant permittivity ε: (i) The imaginary and real axes of
the sheet Λ0 except the interval γ ∈ I0 = (1,

√
ε) do not

contain eigenvalues of problem (3), (7). (ii) Interval I0 con-
tains a finite number (or none) of eigenvalues; their number
depends on the problem parameters and is clarified in the
next sections. (iii) Surface and complex waves of DR cor-
respond to real eigenvalues γ ∈ I0 and complex eigenval-
ues γ ∈ Λ0, respectively. Leaky eigenmodes correspond to
complex eigenvalues γ belonging to an improper sheet of Λ
for which =w < 0.

3. Symmetric surface waves in DR and GL
with positive permittivity

By applying to (6) the conditions of continuity of φ we ob-
tain the DEs: for DR

Gd(x, u) = Fd(x), (8)

or

FD(x, u) = 0, FD(x, u) ≡ Gd(x, u)− Fd(x), (9)

where

Gd(x, u) = −εwK0(w)

K1(w)
,

Fd(x) = x cotj(x), cotj(x) :=
J0(x)

J1(x)
;

(10)
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for GL,

FG(x, u, s) ≡ Gg(x, u, s)− Fg(x, s) = 0. (11)

where

Gg(x, u, s) = ε
√
u2 − x2

K0(s
√
u2 − x2)

K1(s
√
u2 − x2)

,

Fg(x, s) = xCotj(x), Cotj(x) =
Φ1(x, s)

Φ2(x, s)
,

(12)

Φ1(x, s) = J0(sx)Y0(x)− J0(x)Y0(sx),

Φ2(x, s) = J0(x)Y1(sx)− J1(sx)Y0(x).

The existence of real symmetric surface waves in DR
and GL filled with homogeneous dielectric medium having
positive constant permittivity is proved [5] by considering
equations (9) and (11) w.r.t. the (real) variable

x = κ
√

(ε− 1)− w2 = κ
√
ε− γ2, x ∈ (0, κ

√
ε− 1)

where ε ≥ 1. If x∗ ∈ (0, κ
√
ε− 1) is a root of (9), then

γ∗ =

√
ε−

(
x∗

κ

)2

∈ (1,
√
ε) (13)

is the propagation constants of a real symmetric surface
wave. The analysis in [5] is largely based on detailed in-
vestigation of cylindrical cotangent functions cotj(x) and
Cotj(x) that exhibit all basic properties of the trigonomet-
ric cotangent; namely, cotj(x) takes all real values on ev-
ery interval (ν1

m, ν
1
m+1), cotj(x) > 0, x ∈ (ν1

m, ν
0
m),

and cotj(νnm) = 0, where νnm, m = 0, 1, 2, . . . , are the
mth zeros of Bessel functions Jn(x) (n = 0, 1). The
same applies to Cotj(x) on intervals

(
h1
n(s), h1

n+1(s)
)

and(
h1
n(s), h0

n(s)
)

where h0
n(s) and h1

n(s) are the nth zeros of,
respectively, Φ2(x, s) and Φ1(x, s) w.r.t. x with s > 0.

According to [5], if u = κ
√
ε− 1 ≥ ν0

1 , then there ex-
ists a root x = x∗ ∈ (ν0

1 , ν
1
1) of DE (9); if u ∈ (ν0

1 , ν
1
1),

then (9) has only one root. Thus there are at most finitely
many symmetric surface waves propagating in a lossless
(=ε = 0, <ε > 1) DR and their normalized propagation
constants γ ∈ Γ(ε) = (1,

√
ε). The symmetric surface

waves in DR are absent if u < ν0
1 , so that for every ε > 1

there is a κ = κ∗(ε) > 0 such that DE (9) has no roots on
the interval Γ(ε) for κ ∈ (0, κ∗(ε)).

For GL, there exists a root x1 = x1(s) of DE (11) at an
arbitrary s = b/a > 1, so that GL supports (at least one)
symmetric fundamental surface wave (the so-called Som-
merfeld wave) for arbitrarily thin dielectric cover and any
ε > 1. Higher-order surface waves exist under the condi-
tion

u = κ
√
ε− 1 ≥ h0

1(s). (14)

with x ∈ (0, κ
√
ε), in particular, N symmetric surface

waves for u ≥ h0
N (s) (N = 1, 2, . . . ).

4. Symmetric surface waves in metamaterial
DR and GL

Having elaborated the analytical and numerical methods
for determining real and complex waves in homogeneously
filled DR and GL, we extend the technique and consider
these waveguides filled with metamaterial media. To this
end, one can consider DEs (9) and (11) w.r.t. the real vari-
able x = κ

√
n2 − γ2. The proof of existence and determi-

nation of the intervals of localization of real roots of DEs
(9) and (11) can be performed similar to [5]: by analyz-
ing the behavior of the right- and left-hand sides of (9) and
(11) w.r.t. x ∈ (1, n) for a given constant n > 1; the only
difference is that in (9) and (11), parameter ε < 0.

Figure 2: Graphs show the location of the first two roots of
DE (9) w.r.t. x for κ = 2.5, ε = −5, a = 1, u = 5.

Figure 3: Graphs show the location of the first two roots
of DE (9) w.r.t. x corresponding to higher-order symmetric
surface waves for κ = 6.25, ε = −3, a = 2.5, u = 8.8388.
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Numerical solution of DEs (9) and (11) is performed at
constant negative values of permittivity and permeability,
disregarding thus frequency dispersion of the metamaterial.
For sample calculations, we choose DR and GL and a range
of values for their metamaterial core and cover ε = −5 and
µ = −1 resulting in n2 = 5 that occurs at the frequencies
f = f∗ ∼ 12GHz obtained for a double-ring-resonator
metamaterial described in [3]. Other parameter values are
k0 = k∗0 = 2πf∗

c ≈ 2π12·109

3·1010 = 0.8π ≈ 2.5 yielding
κ∗ = k∗0a = 1 at the DR radius a = 1

k∗0
= 0.4 [cm].

Figure 4: Graphs of Gd(x, u) (., –, +) and Fd(x) (o, –, *)
against x for ε = −5, κ = 0.25 (., o, curves on the smallest
interval x ∈ (0, u), u = 2κ = 0.5), 0.75 (–), and 1.25 (*,
+, curves on the largest interval x ∈ (0, u), u = 2κ = 2.5)
illustrating the absence and the evolution (removal) of the
root of DE (8) for the fundamental DR surface mode as κ
increases.

4.1. Metamaterial DR

To determine the conditions of the existence of symmetric
surface waves in DR for negative ε resulting from the oc-
currence of roots of DE (9) on the interval Γ(ε) where DE
is defined and considered, highlight some properties of the
functions Fd = Fd(γ) and Gd = Gd(γ) entering DE (9):

(id)Gd(γ) is bounded and continuous on Γ(ε), Gd(γ =
1) = 0, Gd(γ) decreases monotonically and is negative on
Γ(ε) for all κ > 0, Gd(κ = 0) = 0 for all γ ∈ Γ(ε),
and the range of Gd(γ) is the interval K(ε, κ) = K̃(u) =

{y = Gd(γ) : 0 < y < K(u)} where K(u) = εuK0(u)
K1(u) <

0 and −K(u) increases monotonically (for ε < −1 and
u = κ

√
|ε| − 1 > 0), and lim

u→+0
K(u) = 0 (in view of the

asymptotic expansions of the modified Bessel functions in
a vicinitiy of zero).

(iid)−Fd(γ) is negative on Γ(ε) for sufficiently small κ
with−Fd(γ = 1) = F(u) = −ucotj(u) < 0 for κ such that

0 < u < ν0
1 ; lim

x→+0
xcotj(x) = lim

x→0
x
J0(x)

J1(x)
= 2 (in view

of the asymptotic expansions of the Bessel functions in a
vicnitiy of zero), so that one can set −Fd(γ =

√
|ε|) = −2

for all κ > 0 and −Fd(κ = 0) = −2. Thus if κ is small
(tends to zero), the magnitude of minΓ(ε)Gd(γ) = K(u)
can be arbitraily small while |Fd(γ)| is close to a constant
2, so that K(u) > −2 for κ ∈ (0, κ∗) and−Fd(γ) > Gd(γ)
on the whole interval Γ(ε) for a certain κ∗ = κ∗(ε) > 0.

(iiid) Fd(γ) has singularities (poles) on Γ(ε) at γ =

γn,d =

√
ε−

(
ν1
n

κ

)2

corresponding to x = xn,d =

κ
√
ε− γ2

n,d = ν1
n, if κ > 0 is such that γn,d ∈ Γ(ε)

(n = 1, 2, . . . ) for a given ε < −1.
Thus, for every ε < −1 there is a κ = κ∗(ε) > 0

such that DE (9) has no roots on the interval Γ(ε) for
κ ∈ (0, κ∗(ε)). In Fig. 5 this case is illustrated by the
curves plotting the functions Fd = Fd(γ) and Gd = Gd(γ)
entering DE (9) at κ = 0.06. When κ increases (together

with u), DE (9) acquires the root γ(1)
0,d =

√
|ε| −

(
x
(1)
0,d

κ

)2

with 0 < x
(1)
0,d < ν0

1 which has a lower cutoff κ = κ∗(ε);
its value is approximately determined from the condition

K(u) = −2, K(u) = εu
K0(u)

K1(u)
, u = κ

√
|ε| − 1,

(15)
satisfied already at κ = κ∗(−5) ≈ 0.33 and κ =
κ∗(−10) ≈ 0.13.

This root is removed with a further increase of κ (and u)
so that it has an upper cutoff determined from the condition
u = ν0

1 as can be followed by observing the mutual location
of blue and red curves in Figs. 2 and 3. Figure 5 show plots
of the functions Fd = Fd(γ) and Gd = Gd(γ) entering
DE (9) on γ ∈ Γ(ε) for different values of κ. The plots
enable one to follow emergence, evolution, and removal of
the roots of DE (9) and thus emergence and removal of the
fundamental (with no oscillations) DR surface mode. In
particular, the upper red curve in Fig. 5 for Gd(γ) and the
curve marked with + for Fd(γ) plotted for κ = 0.06 do not
intersect which indicates the absence of roots of DE (9) for
small κ ∈ (0, 0.05).

Next, as κ increases (as well as u), |F(u)| decreases ap-
proaching zero from below and DE (9) acquires two roots.

γ
(q)
1,d =

√
|ε| −

(
x
(q)
1,d

κ

)2

with ν1
1 < x

(q)
1,d < ν0

2 , q = 1, 2,

where x(1)
1,d < x

(2)
1,d and γ(1)

1,d > γ
(2)
1,d . The root x(2)

1,d is in

a left vicinity of x = u and the corresponding γ(1)
1,d is in a

right vicinity of γ = 1. γ(2)
1,d is displayed as a point of in-

tersection of the middle solid curves in Figs. 4 and 5 and
the second (right) intersection point of blue and red curves
in Fig. 2. This intersection is preserved until F(u) vanishes
at u = ν0

1 and then becomes positive (upper curves in Fig.
5. |K(u)| increases together with κ which leads to the re-
moval of the root of DE (9) indexed with q = 2. While
the root γ(2)

1,d (smaller w.r.t. γ) disappears as κ increases,

the second (greater w.r.t. γ) root γ(1)
1,d shifts towards the
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(first) singularity γ1,d ∈ Γ(ε) of Fd = Fd(γ) and remains
for all κ > 0. This root is clearly seen in Fig. 2 as the
first (left) intersection point marked with a black dot re-
sulting from a shift to the right of the blue Gd(x)-curve as
κ (and u) increase. The removal of the root x(2)

1,d which

tends to x = u (and γ(2)
1,d tends to γ = 1) and then dis-

appears as κ increases can be easily traced in Figs. 3 and
4. Thus, for κ ∈ (κ∗, κ

1
∗) where κ1

∗ = κ1
∗(ε) is such that

u = u1
∗ = κ1

∗(
√
|ε| − 1) = ν0

1 , DE (9) has one root which
is removed when u > u1

∗. This evolution of the fundamen-
tal DR surface mode is shown in Figs. 6 for different values
of ε and κ. These roots are shown in Fig. 8 where the
dispersion curves (DCs) γ = γ(κ) decrease posessing thus
anomalous dispersion with negative slopes. The emergence
and removal of roots x(2)

1,d and γ(2)
1,d take place first on an in-

terval ν1
1 < x < ν0

1 and then is repeated on every interval
ν1
n < x

(q)
1,d < ν0

n.
A further increase of κ (and u) until u reaches u = ν1

1

(where Gd(γ) has singularity) and then exceeds this value
leads to the emergence of the DE root associated with the
smaller (left) intersection point of Fd(γ) and Gd(γ) in Fig.
6; the corresponding DCs with anomalous dispersion are
shown in Fig. 9. The DCs with regular dispersion associ-
ated with the greater (right) intersection point of Fd(γ) and
Gd(γ) in Fig. 6 are in Fig. 9; they give rise to higher-order
surface waves existing for all κ > 0 and similar to those in
DR with positive permittivity.

4.2. Metamaterial GL

Determine the conditions of the existence of symmetric sur-
face waves in GL for negative ε resulting from the occur-
rence of roots of DE (11) on the interval Γ(ε) where DE
is defined and considered. Note first that Gg(γ) preserves
for any s > 1 all properties of Gd(γ) indicated in item (id)
in the previous section and we will therefore do not repeat
them referring to (id) above. Following the above analysis
performed for DR, highlight some properties of the func-
tions Fg = Fg(γ) and Gg = Gg(γ) entering the DE impor-
tant for our analysis.

(ig) Fg = Fg(x) is positive on Γ(ε) with Fg(γ = 1) =
Fg(x = u) = Fg(u) = uCotj(u) > 0 for κ, s such that
0 < u < min

(√
ε, h0

1(s)
)
; lim
x→+0

xCotj(x) = 0 (in view

of the asymptotic expansions of the Bessel and Neumann
functions in a vicinitiy of zero), so that one can set Fg(γ =√
|ε|) = 0 for all κ > 0, s > 1 and Fg(κ = 0) = 0.

On the other hand, Gg = Gg(x) is negative on Γ(ε) with
Gg(γ = 1) = Gg(x = u) = 0 and Gg(γ =

√
|ε|) =

Gg(x = 0) = K(u) < 0 (for negative ε) Thus Fg(γ) and
Gd(γ) have different signs on the whole interval Γ(ε) for
κ, s such that 0 < u < min

√
|ε|, h0

1(s).
(iig) Fg(γ) has singularities (poles) on Γ(ε) at γ =

γn,g(s) =

√
|ε| −

(
h0
n(s)
κ

)2

corresponding to x = xn,d =

κ
√
|ε| − γ2

n,g = h0
n(s) if κ > 0 and s > 1 are such that

γn,g ∈ Γ(ε) (n = 1, 2, . . . ) for a given ε < −1.

Figure 5: Plots of Fd = Fd(γ) (blue) and Gd = Gd(γ)
(red) of DE (9) showing the evolution of the fundamental
DR surface mode for ε = −16 at κ = 0.06 (upper red
curve, +), 0.46 (middle curves), and 0.86 (o, *).

Now we can formulate the conditions governing ab-
sence or presence of symmetric surface waves in GL in
terms of parameter u and that are largely similar to those
proved above for DR:

If κ, s are such that, for a given ε < −1, we have
0 < u < h0

1(s), GL does not support any symmet-
ric surface waves. As parameter u increases Fg(γ) ac-
quires singularities γ1,g(s) on Γ(ε) and DE (11) two roots

γ
(q)
1,g(s) =

√
|ε| −

(
x
(q)
1,g(s)

κ

)2

with h0
1(s) < x

(q)
1,g(s) <

h1
1(s), q = 1, 2 (similarly to DE (9)) with x(1)

1,g(s) < x
(2)
1,g(s)

and γ(1)
1,g(s) > γ

(2)
1,g(s). The root x(2)

1,g(s) is in a left vicinity

of x = u and the corresponding γ(1)
1,g(s) is in a right vicin-

ity of γ = 1. This root is preserved until Fg(x) vanishes
at x = h1

1(s) becoming positive as u increases (together
with κ) which leads to the removal of this root. That is, the
second greater root x(2)

1,g tends to x = u (and γ(2)
1,g charac-

terized by anomalous dispersion shown in Fig. 7 to γ = 1)
and then disappears as u increases.

The root γ(1)
1,g shifts towards the (first) singularity γ1,g ∈

Γ(ε) of Fg = Fg(γ) and remains for all κ > 0, s > 1. This
evolution takes place first on an interval h0

1(s) < x < h1
1(s)

and then is repeated on every interval h0
n(s) < x < h1

n(s).

Figure 7 plots Fg = Fg(γ) (red, black, green) and
Gg = Gg(γ) (blue) entering DE (11), (12) that illustrate
evolution (emergence and removal) of the roots γ(1,2)

1,g for
ε = −4, κ = 1 and three different values of s. Figure 7
illustrates the anomalous dispersion of γ(2)

1,g showing how

γ1(κ) = γ
(2)
1,g(κ) shifts to γ = 1. Figure 11 displays plots

of γ1 = γ
(1)
1,g(s) solving DE (11), (12) for different κ and

two different values of ε.
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Figure 6: Plots of Fd = Fd(γ) (blue) and Gd = Gd(γ)
(red) of DE (9) showing the evolution of the fundamental
DR surface mode for ε = −16 at κ = 0.86 (upper curves)
and 1.3 ( (lower curves).

Figure 7: Plots of Fg = Fg(γ) (red, black, green) andGg =
Gg(γ) (blue) in DE (11), (12) showing the evolution of the
fundamental GL surface mode for ε = −4, κ = 1 and s = 3
(green), 2.4 (black) and 2.2 (red).

5. Properties of symmetric surface waves in
metamaterial DR and GL

Summarize most important properties of symmetric surface
waves in metamaterial DR and GL discovered on the basis
of the results of this study. These properties differ signif-
icantly from those of surface waves in ’standard’ DR and
GL filled with the media having positive permittivity.

1. Metamaterial medium leads to the phenomen inher-
ent to both DR and GL which is not registered for
waveguides filled with ’standard’ media: occurrence
of two symmetric surface waves emerging in pairs
on disjoint frequency intervals. One of these waves
(with a smaller relative propagation constant which

Figure 8: Plots of γ1 = γ1(κ) solving DE (9) for the funda-
mental DR surface modes vs κ for ε = −15−k from k = 0
(upper black curve) to k = 10 (lower red curve).

Figure 9: Plots of γ2 = γ2(κ) solving DE (9) for a higher-
order DR surface modes at ε = −16−k from k = 0 (lower
black curve) to k = 10 (upper red curve) corresponding to
smaller (left) intersection points of Fd(γ) andGd(γ) in Fig.
6.

tends to 1 as relative radius κ increases) exists over
a relatively short interval and is characterized by
anomalous dispersion, and the other does not cease
and is preserved for greater values of relative radius
κ and s. The former wave has two cutoff frequen-
cies and the short intervals where it exists are re-
peated over the whole range κ > κ∗. Emergence
and removal of waves are governed by the parameter
u = κ

√
n2 − 1 = κ

√
|ε| − 1 which may be called

the shifted electric radius of the waveguide.

2. For metamaterial DR, a fundamental symmetric sur-
face wave appears at much smaller κ than in the case
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of standard medium, so that the cutoff value for this
fundamental mode may be by an order of magnitude
less than for standard DR. The fundamental wave in
DR has lower and upper cutoffs κ∗lo,1(ε) and κ∗up,1(ε)

determined from the conditions u = ν0
1 and (15).

3. A metamaterial GL does not support the Sommer-
feld wave which exists in GL covered by an arbi-
trarily thin standard dielectric. A fundamental sur-
face wave in metamaterial GL has a rather high lower
cutoff value of parameter s, the ratio of the external
and internal GL radii, determined from the condition
u = h0

1(s) where h0
1(s) is the first zero (w.r.t. x) of

the function Φ2 in (11). Figure 11 displays propa-
gation constants of the fundamental surface wave in
metamaterial GL in the range of s-values above the
cutoff.

Figure 10: Plots of γ2 = γ2(κ) solving DE (9) for a higher-
order DR surface modes at ε = −15 − 0.5k from k = 0
(upper red curve) to k = 4 (lower black curve) correspond-
ing to greater (right) intersection points of Fd(γ) andGd(γ)
in Fig. 6.

Exemplify the frequency ranges and cutoff values
where e.g. the mentioned fundamental symmetric surface
waves in DR exists. Consider a DR of the radius a = 0.4
[cm] filled with metamaterial having ε = −5 and µ = −1
(n2 = 5) that occurs e.g. at the frequencies around f =
f∗ = 12GHz for a double-ring-resonator metamaterial [3].
In this case k0 = k∗0 = 2πf∗

c ≈ 2.5, κ∗ = k∗0a ≈ 1,
and u∗ = κ∗

√
|ε| − 1 = 2κ∗ ≈ 2. The lower (when

the wave emerges) and upper (when it ceases) calculated
cutoffs κ∗lo,1(−5) ≈ 0.15 and κ∗up,1(−5) ≈ 0.55 so that
for the chosen radius the corresponding frequency interval
where the fundamental symmetric surface waves exists is
from 1.8 to 6.6 GHz. For a DR with the same radius filled
with standard dielectric having ε = 5 (and µ = 1) the lower
cutoff κ = κ∗lo,1(5) at which the fundamental symmetric
surface wave starts to exist is determined from the equality

u = 2κ∗lo,1(5) = ν0
1 ≈ 2.4 which yields κ∗lo,1(5) ≈ 1.2 and

f ≈ κ∗lo,1(5) 3·1010

0.8π ≈ 1.2κ∗lo,1(5) · 1010 = 1.44 · 1010 =
14.4 GHz

Figure 11: Plots of γ1 = γ1(κ) solving DE (11), (12) of
the fundamental GL surface modes vs s = b/a for κ = 2
(lower green curves), 2.2, and 2.4 (upper red curves) at ε =
−4.

6. Conclusion
We have proved the existence of symmetric surface waves
in DR of circular cross section and GL filled with metama-
terial media and have determined the location of the corre-
sponding sets of roots of the DEs. A technique for correct
mathematical investigation of DEs has been elaborated.

On the basis of in-depth analysis using this technique
and numerical solution of DEs we have shown that symmet-
ric surface waves in metamaterial DR and GL differ sub-
stabtially from those in ’standard’ guides (filled with media
having positive permittivity). In particular, symmetric sur-
face waves exist in pairs on disjoint frequency intervals; one
of them is characterized by anomalous dispersion, has two
cutoff frequencies, and the frequency intervals where it ex-
ists are repeated over the infinite range of variation of the
relative waveguide radius κ. For a metamaterial DR, a fun-
damental symmetric surface wave appears at much smaller
κ than in DR filled with standard medium and the cutoff
value for this fundamental mode may be by an order of
magnitude less than for standard DR. Unlike GL covered
by an arbitrarily thin standard dielectric, a metamaterial GL
does not support the Sommerfeld wave. A fundamental sur-
face wave in metamaterial GL has a high lower cutoff value
in terms the ratio s of the external and internal GL radii.

The methods developed in this study and the results ob-
tained will be used as a mathematical background to deter-
mine real and complex wave spectra for broader families
of open dielectric and metamaterial waveguides including
multi-layered fibers.
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