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Abstract

Magnetic field and eddy currents in a cylinder of finite
length are calculated by separation of wvariables. The
magnetic field outside the cylinder or inside the bore of the
hollow cylinder and shell is expressed in terms of Bessel
functions. Both axial and transverse applied fields are
considered for the solid and hollow cylinders. The
equations for the vector potential components are
transformed in one-dimensional equations along the radial
coordinate with the consequent integration by the method
of variation of parameters. The equation for the scalar
electric potential when required is also integrated
analytically. Expressions for the magnetic moment and loss
are derived. An alternative analytical solution in terms of
scalar magnetic potential is derived for the finite length thin
shells. All formulas are validated by the comparison with
the solutions by finite—element and finite-difference
methods.

1. Introduction

The paper presents an analytical method of calculation of
steady-state =~ magnetic fields and eddy-currents in the
cylinder of a finite length placed in the external axial or
transverse magnetic field. It is known that for the infinitely
long cylinder the closed form solutions were known in
different forms [1-4]. However as it was pointed out by
many authors [1,2,5,6] that for the finite length cylinder the
general analytical solution had not been available. For axial
symmetry the distribution of  eddy currents induced in a
conducting rod of finite length by a coaxial coil is given in
[7]. In general, the problem of a finite length cylinder
earlier was solved by different numerical methods, and the
solution was reported by several authors [6,8-11]. The
conductive cylinder in transverse field was also included in
so—called FELIX test problems in 80-ties [12-13] to verify
the FEA codes. The analysis of eddy-currents in the
cylinder is of interest for many practical applications such
as electromagnetic shielding, designs of MRI /NMR
components, conductive components of accelerator
magnets, fusion reactors, induction heaters, turbogenerators
and other electrical machines. The main aid of this paper is
to derive a general analytical solution in terms of Bessel
functions for eddy currents induced in a conductive
cylinder by the quasi-static electromagnetic field.

2. Formulation of the problem

We consider the conductive non-magnetic cylinder with the

constant electrical conductivity o and magnetic
permeability 4, placed in the applied magnetic field
oscillating with the constant frequency ®. The vector
magnetic potential 4 satisfies Amperes equation

rotrotA = 11, » (1)

where g is the magnetic permeability of free space , j is the
current density for the area r=/0, ry] , ¢=[0, 27], z=[-zy,zy]
and zero outside this region. The boundary condition at
infinity

A() = 4, (2)

where A4, is the vector potential of applied magnetic field.
From Ohm’s law we can express the current density in terms
of the vector and scalar V potentials of electromagnetic field
as:

i=— _gyp. €)
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where o is the electrical conductivity of cylinder. The
induced currents form the closed loops, and therefore current
density satisfies the condition for the solenoidal field

divi =0. 4)

The vector potential allows us to apply an additional
gauging condition so that the field can be determined
uniquely from the Maxwell equations. If we apply Coulomb
gauge ( divA =0) equations (1), (4) become

Vo= (1a)
VIV =0 )
with the coupled boundary conditions

ov _8Aﬁ ) (6)
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Equation (6) provides a zero component of eddy-currents
normal to the surface 7" of the conducive cylinder. The scalar
potential is defined to be zero outside the conductor. After
substitution (3) in (1a) we have a system of four differential
equations that are coupled.

In orthogonal system of coordinates (1a) or (1b) can be
solved by the method of separation of variables when the
boundary [" coincides with the pieces of coordinates
surfaces. A conductive cylinder falls in this category of
geometries. However we have not found in literature the
complete analytical solution for the eddy-current problem



when the field is applied orthogonal to the cylinder axis. The
major obstacle probably is in finding the analytical solution
of the field in the whole space outside and inside the
cylinder without subdividing the space in sub-regions.
However in case of linear conductors there is no a rapid
change of the flux density or field on its boundaries at least
for moderate frequencies. Therefore the vector potential of
magnetic field can be sought as a continuous smooth
function in the whole space having piecewise conductive
properties. The only problem seems to appear for the electric
scalar potential that has to be coupled accurately with the
vector magnetic potential on the boundaries of the
conductor.

3. Cylinder in axial field

When cylinder is placed in the axial magnetic field (Fig.1)
the problem can be significantly simplified. Only one
component of vector potential is enough to formulate the
problem. The scalar electric potential is not needed in this
case. The complex azimuthal component of vector potential
Ay exp(iat) inside and outside the cylinder satisfies the
equation
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and the far field boundary condition
Ay(0) = Byr /2 (2a)

where B, is the amplitude of applied field . The vector
potential of uniform field in form (2a) can be found by
integrating the equation rotd = B [5,14].

The current density in (7) can be expressed in terms of the
time derivative of vector potential

J; =—iwod, (3a)

Since the magnetic permeability is the same through the
whole space we can express the solution in the form of
Fourier series accounting for the field symmetry as

4,=) 4, (F)cosh, z> ®)
m=l1
In accordance with Grinberg method [15] after
substituting (8) in (7) and integrating over the interval
[0,z.,] with the weight (2/z.,)cosA,,z we have
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fn=—iow) d, 4> (10)
7

2 Z
d,, =— Jcos A,z cos A,zdz =
Z,%

; an

y4

©

1 ( sin(4,, —4,)z,

" sin(4,, +4,)z,
/’i’m - ﬂ’/ .

A+

R EEEREE
'RIC T T S T N T T A
AR PR R B
PoTOT voroT
oYY vV
Ty oy v vy
TT Y oy oy
vy Py oy
I T w |
VY YVYYL Yy
r vr vy v vy vy v v v v

Figure 1: Conductive cylinder of radius r, and length 2z, in
uniform axial field B, directed in z-axis.
where A, =n2m-1)/(2z,) > Zx is the axial coordinate where

the field satisfies the far-field boundary condition (2a).

Using a method of variable parameters we can resolve (9)
in the sum of a general solution of the homogeneous
equation and a particular solution of (9)

A4,(r)= B(”Tdmo +C,J,(iA,r)+ D, H (iA,r)-
" , (12)
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Jy and H,' are Bessel and Hankel functions, respectively,

C,, D,, are the constants. To keep the potential finite at =0,
we have to eliminate the functions that have singularities on
the cylinder axis. This is achieved by zeroing D, = 0 in
(12). To satisfy the boundary condition (2a), we have to
assume C,,= 0 as well. Then, after replacing the functions of
complex argument in (12) by the modified Bessel functions
we rewrite equations for harmonics of vector potential as:
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After substitution j, using (10) and approximation of the
integrals by quadratures on a regular grid », =7, /.,
n=I,N in the interval [0,7)] one can derive a system of
linear equations for the potential harmonics, x,=A4,,(7,),
k=n+(m-1)N:

chk'xk' =/ (135)
=

where



m'n
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h, is the grid size over the radial coordinate, Jy- is the
Kronecker delta, w, are the quadrature weights. For the
linear approximation of potential along the radial coordinate
w,=1/2 when n=1I,N and w,=1 otherwise. A better accuracy
is achieved when integrating the Bessel functions around
each node of the grid analytically. For example, for internal
nodes

ry+h. /2
1
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where ¥ and W are the combinations of modified Bessel
and Struve functions defined in [16].

Formulas for harmonics of vector potential (14) can be
easily modified for the hollow cylinder with the inner radius
.. The only change required in (14) (that is now valid for
r>r; ) is the replacement of zero by 7; as a lower limit in all
integrals over the radial coordinate. For hollow cylinders, it
is of practical interest to calculate the field on the axis. The
vector potential inside the bore 0<r<r;
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The expression for the axial component can be derived as
M
B.=Y B,(0)cos 4,2’ (16)
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where coefficients B,
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or after approximation the integral by the quadrature
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For the field outside the cylinder the harmonics of
potential are calculated in terms of harmonics on the grid
within the cylinder as:

BO rdm 0
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The radial component of flux density outside the cylinder

M
B.(r>r)=Y B, (r>n)sini,z

m=1
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Figure 2: Current density across the cylinder of r,=1 cm,
zg=1 cm at f=300 Hz, By=10 mT: solid line = real j ,
analytical , dash line =imaginary j , analytical; o = real J,
FEA, [J = imaginary j, FEA
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Figure 3: Relative flux density on the axis and outside of the
hollow cylinder of 7=0.5 cm, r;=1 cm, z;=1 cm at /=300
Hz : solid line = real component , analytics, dash line
=imaginary component, analytics; o = real component, FEA,
[J = imaginary component, FEA

The field inside has a similar structure but the modified
Bessel functions of the first and second kind in (18) are
swapped. The axial component of flux density can be
derived as well. In general, it will include K;(4,r) and its
derivative over the radial coordinate outside the cylinder
and [;(4,r) and its derivative inside the cylinder if hollow.

For the thin cylindrical shells the number of steps over
the radial coordinates can be significantly reduced. For just
one step the set of equations (15) degrades to the system of
equations for the potential harmonics at the same radial
coordinate.

The total current induced in the cylinder is
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Figure 4: Moment of currents induced in the solid cylinder
of r,/~=1 cm, z;=1 cm at By=10 mT of axial field: solid line =
real component, analytics, dash line =imaginary component,
analytical; o = real component, FEA, [J = imaginary
component, FEA.
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Figure 5: Power loss in the hollow cylinder of 7=0.5 cm,
r~1 cm in the applied field of By=10 mT at different
lengths, 2z/=1 cm (1); 2 cm (2), =4cm (3): solid line =
analytical solution (21), o = FEA.
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The moment of the induced currents is calculated as
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Figure 6: Relative amplitude of flux density on the axis of
the thin cylindrical shell of 7=1 cm, z;=1 cm, thickness
h=0.35mm at different frequencies : solid line= analytics,
o=FEA..

Formulas for the field components, moment and power
loss have been validated by the comparison with the results
from FEA code [17]. The solid and hollow copper cylinders
of radius 1 cm and various lengths have been considered.
The results of comparison are presented in Fig.2-Fig.6. The
number of harmonics M in these numerical tests typically is
in the range between 20 and 30, and number of steps in
radial grid, N is between 20 and 30 as well. The step 4.,
depends on the frequency and it is selected based on the skin
depth.  The far field boundary (2) is applied at z,, that
typically is selected in the range of 5z, or higher. To reduce
the oscillations in the solution, Lanczos smoothing is applied
in all series over the axial coordinate.

4. Cylinder in transverse field

4.1. Solid cylinder

Let’s assume that the external field is applied in x-direction
(Fig.7). The induced current density in the cylinder has
radial, peripheral and axial components, so the problem
becomes a 3D one. We denote the components of vector
magnetic potential as 4,,4,A4., respectively. The potential
satisfies (la) in the whole space when Coulomb gauge is
selected. The current density is non-zero for the area r=/0),
rol , ¢=[0, 27], z=[-zy,z,], and is zero outside this region.
The boundary condition at infinity [1], [3]

A () = Byrsing s (2b)

Equation (1a) in the component notation can be written as
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The scalar electric potential is also required to satisfy (5).

Because the magnetic field has a tangential symmetry
over xz- and xy-planes and normal symmetry over zy-plane
the potential components can be presented as

A=A (r2)sing, A (rn2)=)4,(sind,z> (22
m=1

4,= A (r2)cosd, A,(r,2)=) 4, (sing,z> (23)

m=1

A=A (r2)sing, A(rn2)=) A, (cosh,z: (24

m=1

where 4 =z(2m-1)/(2z,)-

Since the cylinder has a finite length of L =2z, the current
density and electric scalar potential are  zero beyond its
volume while the magnetic field should be extended in z-
direction far enough from the cylinder top and base faces.
We assume that the magnetic field is equal to the applied
field at z, <z> z, .Thus the current density and electric
potential are expanded in the Fourier series over the interval
z=[-zy,zy] while the vector potential is fit in the interval z=/-
ZaZaf -For the current density and electric scalar potential in
the cylinder, we also account for the model symmetry

j,=3,sing, I,=>j,(r)singz> (25)
=
j,=3,c084, 3,=)" j,(r)sing,z> (26)
=
j.=3.sing, I.=)j,(r)cosyz> (27)
=
V=vsing, v=>V,/(r)sinn,z’ (28)

k=1

where 7 = 7(2k-1)/(2z,)-

Equation (le) contains only one component of vector
potential and can be solved similar to (7). After substitution
series (24) in (le) and integration over [-z,,z,] the equation
for the potential harmonics is
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Figure 7: Conductive cylinder of radius r, and axial length
2z,in uniform transverse field directed in x-axis

Similarly to the solution of (9) we can resolve (29) in the
sum of a general solution of the homogeneous equation and
a particular solution. Because the current density harmonics
(30) is dependent on the radial coordinate we use the method
of variable parameters to express the harmonics 4., in the
form of integrals

Azm :_B()rdmo +}l0]1(/7‘”1}"),".']sz(r')[<1(/1”7}"')1"'d’/.v ’ (32)
B TP By, 1.
0

Equations (lc) and (1d) for the radial and angular
components of vector potential contain the crossing terms.
To avoid coupling between the equations, few manipulations
on (Ic) and (1d) should be performed. First, let’s exclude
the polar angle from the consideration by substituting 4,, 44
into (1c) and (1d) in accordance with (22)-(23), respectively

2A
AAr—zﬁ’+ rz“’=—u03m (33)
2A, 2A, < (34)

where
2 2
Ao (10 0.
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Next, we combine (33) and (34), namely we add and
subtract them from each other with obtaining the equations
for the new variables Ay, = Ay A, and Ay, =Ay - A,

AA,, == (3,+3,) (33)
4A —r ~ ~
ARy, ==t (3,=3,) (36)

Note that the variables Ay, and Ay, in (35) and (36) are
decoupled now, and the solutions can be expressed in terms
of Bessel functions of integer index. After multiplying (35)
and (36) by 1/z,, sinA,z and integrating over [-z.,z,] the
equations for the harmonics are
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The solution of one-dimensional equations (37) and (38) can
be written in terms of Bessel functions similar to solution of
(32)
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The current density harmonics j, , jgu , j-m 0 (32),(39), and
(40) can be determined from the condition for the
divergence-free current density (4). Let’s impose the
Coulomb gauge for the vector potential. Then the scalar
electric potential satisfies the Laplace equation (5). After
substituting (28) in (5), multiplying it by 1/z, sinnz and
integrating over [-zy,zy| the equations for the harmonics of
scalar potential are

v, 1oV, Vi (41)
I TR
or* roor 2 M U
where the right part in (41) appears because the normal
derivative of scalar potential on the cylinder surface at z=+

zy1s different from zero. It can be further expressed through
the time derivative of vector potential in accordance with (6)
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The boundary conditions for the harmonics of scalar
potential are

V,.(0)=0, (43)
% =—i a);irk ()’ (44)
or [r=r,

where

Zyk ()= Zbkm o (o)

Note that the boundary condition for the derivative of scalar
potential (44) is a result of zero radial component of current
density at  =r,.

In general, (41) can be resolved through the integrals
similarly to (14)

V, =G, (mr)+ia)ll(77kr)jqk (rK, ("' dr'+ (45)

ik, (77 g, ), ('
0

where the coefficients Gy are determined from the boundary
condition (43) as:

G, :_,liw(‘zrm(ro)+Kll(ﬂkro)J.qkll(ﬂkry)r'dr') ’ (46)
i (m,1y) 0

where [ 1' S Kl' are the first derivatives of Bessel functions.

The scalar potential derivative at z=* z, can be expressed
through o/ divoA . Indeed (4) can be rewritten as:

vy =— dived- (47)
o

The divergence in the right part of (47) is not zero anymore
if we take the ends of cylinder into consideration. For the
Coulomb gauge divod is zero everywhere inside the
cylinder but the surface where it has a jump of &(4s) that
is called as a surface divergence [18]. Because the
conductivity is discontinuous at z=t z, and the integration
totally includes the jump of o we have
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Thus the right part in (41) can be replaced by the integral of
divod after accounting for the angular dependence of vector
potential components (22)-(24)

(49)
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After replacing the vector potential components by
harmonics over the axial coordinate and subsequent
integration we obtain

o4, A
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Ao Lt 3, (50)
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The coefficients sz are the result of fitting the axial

component A, to the cosine harmonics along the cylinder



length. We use values of potential up to the ends of the
interval [-zj,z,/ where -iocwA, is zeroed because the jump in
the conductivity. This allows us to account for the surface
divergence at z=7z, The computation of g, using (50) is
more complex than using a straight expression (42).
However including divod in the equation for the scalar
potential enforces the divergence-free condition (4). To
combine the advantages of two methods for computation of
qr » one can add divd (=0) to the jump of potential in
expression (42)

49y = (" 2lfwA:(Zo)'”.wioZ‘,(%_ﬁ_/l/"‘lzl)bld - (51
z, z, T or r
The latter expression for ¢, accurately includes the surface
divergence and enforces (4) at the same time.

The harmonics of current density can be expressed
through the harmonics of potentials as follows:

j.=—o(iod, +%),
or

~ (52)
Jg =—0c(ioA, + &),
,

T = _O-(ia)‘zzk +n.7,)

The solutions (32),(39),(40) and (45) contain the
unknown coefficients of harmonics 4,4 Agrm Azm Vi
After approximating the integrals by a high accuracy
quadratures on the grid r, =r, ;ih,,, n=1,N built for the
interval [0,r,/, these expressions form a system of linear
equations of order of 4NVM where M is the number of
harmonics in series (22)-(24),(28). The structure of the
system is similar to (15) but it is more complex since the
current density components in (32), (39), (40) should be
expressed through the vector and scalar potential harmonics
using (52). To simplify the solution, the system of equations
can be solved also using the iterative approach. In this case
the current density (52) is split so that the parts associated
with the time derivatives of vector potential are included
into the matrix coefficients while the terms associated with
the electric potential are kept in the right part of system.

The analytical method has been applied to the copper
cylinder of radius, ry of lcm and half length, z, of lcm.
The number of harmonics M has been selected in the range
>30, and the far field boundary conditions have been applied
at z>3zy. The distribution of current density is presented in
Fig. 8-10 in comparison with the results from FEA [17] and
FDM [19]. A pure hexahedral mesh in all directions has
been used in both numerical methods. The mesh has been
refined in both methods until they provided the close
solutions in terms of local fields, energy and moment of
induced currents. For FDM, the symmetry over the polar
angle (22)-(24) has been used first, and then four coupled 2-
D equations have been solved. 2-D equations have been
approximated using the integral-interpolation method [19].
The finite-differential schemes for the equations are similar
to those reported in [20].

Radial current density, j, A/mm?
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Figure 8: Radial component of current density in YZ-plane
across the cylinder of =1 cm, z;=1 cm at /=300 Hz, B,~10
mT: solid line = real j,, analytics, dash line =imaginary j, ,
analytics; o = real j,, FEA, [1 = imaginary j,, FEA; x = real j,
, FDM, *= imaginary j,, FDM.
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Figure 9: Peripheral component of current density in XZ-
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B;~10 mT, data labels are the same as in Fig. 8.
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4.2. Hollow cylinder

Similarly to the cylinder in the axial field the calculation
formulas for the transverse field can be applied in the case
of the hollow cylinder of the inner radius r;, outer radius r,
and axial length 2z,. The equations for the components of
vector potential (32),(39),and (40) differ only by the
integration range. The lower zero limits in integrals
(32),(39) and (40) should be replaced by 7; . Thus the grid
along the radial coordinate is built in the interval [r,ry].
The expression for the scalar electric potential contains an
additional Bessel function of second kind K;(7) with the
constant coefficients
Ve =G 1)+ E K () + 1, ()
r-o . (53)
x| q, ("MK, 'y dr'+ K, () [ g, D (o'

This is because the scalar potential is considered for 7>0.
Thus the solution (53) that includes infinite functions
K;(mr) at r=0 is finite everywhere in the hollow cylinder.
The boundary condition on the outer surface of the hollow
cylinder is the same as (44). Similarly, on the inner surface
we have
o,

e = —iwd, ()" (54)
or |r=r,

The coefficients G, and F, are determined from the
boundary condition system (44) and (54) as

G, =(K,(n17)g, — K, (1) 1)/ Dy, (55)
E =)t — 1 (m)g )/ Dy,

where
8 = _ia)’qu(ro)/nk _Kll(nkrO)J.qkll(nkr')r'dr'
fi ==iwd, (1), = 1) | 4K, (' v’
D, = I, () K, () = L (1)K (m,73) -

The harmonics of 4, in the bore of the cylinder

Ay oy ==Byrd g+ 10 () T Ry 5O
For A4 one can derive
A, =21, r)T[j ")+ o (PIK (A, ) dr!
¢m | r<r; 2 0 m / gm rm 0 m s (57)
Hy T 7 1 = 1 (A 3]
LG U )= T WK Ry
The component B, on z-axis is
g _lod o4, (58)

Y r o oz

Combining (56)-(58) we obtain the flux density on the axis
of the cylinder

B

x

w0 =By +%;ﬂm COS(ﬂmz)[ JZ»:(V')Kl(imV')I”d}” 59

~[ G+ T DK (A ],

Other components are zero on the axis of the cylinder, thus
B, gives us the magnitude of the field on z-axis.

Similarly to the solid cylinder the formulas for the hollow
cylinder have been verified by the comparison with the
induced currents computed by numerical methods (Fig.11-
14) in the range of frequencies. The steps in the radial grid
have been selected based on the frequency of the applied
field. For example, at least 30 steps (N=31) over the radial
coordinate is used for the frequency of 2 kHz in the case
study with the results presented in Fig. 14.
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Figure 11: Radial component of current density in YZ-
section of a hollow cylinder of ;=1 cm, r=0.5 cm z;=1 at
/=300 Hz, By=10 mT: solid line = real j,, analytics, dash line
=imaginary j,, analytics; o = real j,, FEA, [1 = imaginary j,,
FEA.

X=0.531,

Peripheral current density, j, , A/mm?

&

X=0.531; ©

0 0.2 0.4 0.6 0.8 1
Axial coordinate , 2/z,

Figure 12: Peripheral component of current density in XZ-
section of a hollow cylinder of ;=1 c¢m, =0.5 cm, z,=1 cm
at /=300 Hz, B,=10 mT, data labels are the same as in Fig.
11.
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Figure 14: Field on axis of the hollow cylinder of ;=1 cm,
r=0.5 cm zy,=1 cm at different frequencies: solid line =
analytics, o =FEA.

4.3. Cylindrical shell

A cylindrical shell is a special case of the hollow cylinder
when we can neglect a radial dependence of current
density[2]. First, consider how the thin shell approximation
can simplify the solution in case of hollow cylinder. Since
the thickness of the shell typically is significantly less than
its radius it is practical to consider a one-layer (N=1)
approximation for the derived solution. Indeed if we
neglect the dependence of electric scalar on the radial
coordinate, from (41) we can derive

- 9k (60)
V' [ s
«() 1/r02+77,f

This simple approach has few limits. A one-layer
approximation totally ignores the difference in the current
density across the shell thickness although it accounts for the
radial component of vector potential, and hence for the
radial current density associated with its time derivative.
Also the one-layer model may lead to the ill-defined matrix

Field on axis, B/B,
o
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S

0 0.5 1 15 2
Axial coordinate, z/z,

Figure 15: Field on axis of the cylindrical shell of ;=1 cm,
d,=0.35 mm, zy=1 cm at different frequencies: solid line =
S steps in radial grid , « = V} calculated per (60), A = scalar
magnetic potential method per (74), dash line =
superconducting shell.

for the harmonics of vector potential starting at high
frequencies. It is illustrated in Fig. 15 for a 0.35 mm thick
copper shell of 1 ¢cm radius. When the frequencies are low
the field on the axis is in a good agreement with the accurate
approximation of the shell by five layers (N=6). When the
frequency increases the matrix condition number becomes
too large, and the approximation (60) at N=1 starts to give us
an inaccurate field on the axis. It should be noted that the
calculation of ¢, in (60) using a straight expression (41)
gives a more accurate result since in case of just one layer
the derivative dA,/dr in the expression for divAis hard to
determine accurately.

The alternative solution for the thin shell can be derived
using a concept of stream function [2] and a scalar magnetic
potential [21-22]. The magnetic field is split into the applied
field, /7, and the field from the eddy currents, 77, where the

normal component of x-oriented field on the shell surface is
Hy,.=H, cos¢. Outside the cylindrical shell we can use the
scalar magnetic potential U to calculate the field from the
eddy currents /7, = vy . The magnetic scalar potential

satisfies the Laplace equation everywhere but the shell. The
whole space along the radial coordinate is divided by the
shell into two regions: » > r, (marked by upper index +) and
r < r, (marked by upper index -). The scalar potential inside
(-) and outside (+) the shell can be written in terms of Bessel
functions as

M
U =cos¢) C,I(A,r)cosi,z,
2.l : (61)

M
U’ =COS¢ZC*K1(/1 r)cos A,z
m=1

m m

where C,; and C,," are the constants. Because the normal
component of the field is continuous everywhere including
the shell surface the constants in (61) relate as:

C (2,1 = CKi(4,1,) - (62)



The field tangential component has a jump by the amount of
surface current density j —j j when crossing the shell

thickness from inside to outside

Jir=n  =fx(H —H,)" (63)

r=
0<z<z,

The scalar magnetic potential has also a jump [18] on the
shell surface u=U"-U . After expressing the field through
the scalar magnetic potential in (63) one can write
75 r=r, =nx (Vsu) > (64)

0<z<z,

where index s means that the nabla operator V; works on
the surface , 7 is the unit vector normal to the surface.
In terms of components (64) can be rewritten as

C_ou ol
]s¢ 62 > ].sz A a¢

In accordance with [2] the stream function #(¢,z) relates to

the current density as

(65)

j,=hoV x¥i, (66)
or in terms of components

]v¢ :hro-aia sz 7_hro-ia£. (67)

Oz 7, O¢

The stream function satisfies the equation

1 &% oY .

- 3 3 :la)’uo]—[rv (68)

ry, 09~ Oz

where H, is the radial , i.e. component of the field normal to
the cylindrical surface. Comparing (65) with (67) we can
conclude that the potential jump u satisfies the equation
similar to (68), namely
iazu o’u

+—=iwu,oh H *
2 og o o

(69)

The potential jump u exists only at »=rpand 0 <z <z,
and it can be presented it in the form of series

M
u = Ccos ¢Zum c0s7,,z" (70)

m=1

After substitution (70) in (69) and integrating over /0,z,/ the
coefficients u,, are determined as follows:

m

[OU 0N, iy - .
:_(77?01/;"2)7‘{%’" +Z[:ﬂ’lblmcl I, (/Lro)J 71
m 0 0

The second equation for the coefficients C,, andu, can
be determined from the potential junction at r=r,
U'—u,0<z<z

.
U',zy<z<z,,

U = (72)

After integration (72) over [0,z,] and substitution C,,"
from (62) we obtain

10

-1
: I(A1) . (73)
C =\1,4,n)-K ! 0 Eb
m |: l( mr(J) l( mr(J)Klf(/ler):| - mlu/

Equations (71),(73) form the system of linear equations for
the coefficients C,” and u, that can be solved directly.
However (71),(73) can be solved by iterations with some
under relaxation factor. We assume C,” =0 for the first
iteration, find u,, from (71) and update C,,; using (73) with
under relaxation. We iterate (71) and (73) until the
convergence tolerance is achieved. The iterative method
implements the perturbation of the normal field H, by the
induced field starting with H, as a first approximation for
the field on the shell surface. The iterative algorithm gives a
more steady solution at high frequencies when the matrix of
system (71),(73) becomes ill defined .
The magnetic field on z-axis is calculated as
B (74)

X

cos(4,z)"

1 _
xiy=0 = 7BO - 5 ; Z’m Cm

The thin sheet approximation using the scalar potential
works well even at high frequencies (Fig.15). The
discrepancy from the accurate solution (N=6) increases at
frequencies above 15 kHz when the shielding capacity of the
shell is close to saturation. The solution (71),(73) becomes
unresponsive to the frequency because of difficulties in the
accurate estimation of the normal component of the resultant
field H, on the shell surface (right part of (69)).

4.4. Magnetic moment and power loss

The magnetic moment M, of currents induced in the cylinder
is
/27 Zg
M, =8 [ [[(j.rsing+j,2)rdg)drdz

(U]

(75)

After substituting series (25)-(27) and integrating one can
find

M N
M, = znz(—l)(”“”Liij(r")r,fwnhm
m=1

= (75a)
1 N
+ 2 Z (jrm (rn) + .]¢m (rn ))rnwnhm :|
m n=1
The power loss in the cylinder is
1 277y Zg
Pzg ) !).(.lr.]r +JgdytJ.J.)rdzdr = (76)
LT

N M M
D DN Ui + Janda) + ot WA,

n=l m=1 [=1

20

where

C;, =i[5m(77m /N 5 sin(n,, +17,)2, J
Zy M = M+

The results of calculation of power loss and magnetic

moment of the copper solid cylinder using (75a)-(76) in test

models agree well with the data from FEA and FDM

(Fig.16).
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Figure 16: Moment of current and power loss in the solid
cylinder of r=1 cm, zy=1 cm at B;~10 mT of transverse
field: solid line = real M , analytics, dash line =imaginary
M, analytics; o = real M, FEA, [] = imaginary M, FEA; x =
real M, FDM, #= imaginary M, FDM dash-dot line = power
loss, analytics; A = power loss, FEA; 0= power loss, FDM

5. Conclusions

The analytical solutions for the eddy current problem in the
conductive solid and hollow cylinders in cases of axial and
transverse fields have been derived. The magnetic field
outside the cylinder or inside the bore is expressed in terms
of Bessel functions. Formulas have been verified by the
comparison of the calculation results in test models with the
FDM method and modern FEA codes. Formulas for the
power loss and magnetic moment of currents induced in the
cylinder have been also found. These have been validated
over a wide range of frequencies within the limits of
quasistatic approximation.
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