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Abstract 
In this paper, performance of different indicators for the 
profiling of Ultra Wide Band (UWB) wireless propagation 
channel are analyzed. In particular, the γ-indicator and the 
kurtosis index k are compared in terms of the standard error. 
In order to improve the accuracy in the kurtosis case, results 
of the bootstrap error procedure are also accomplished. 
Further, an evaluation on the computational time needed for 
error estimation, is also provided. The comparison is made 
according to a real set of data derived from UWB 
measurement campaign accomplished within a modern 
laboratory/office building in which the two above 
mentioned indicators have been evaluated. 

1. Introduction 
With the increasing of wireless communication systems 
several studies on the modeling of the propagation channels 
have been accomplished. Particular attention has been given 
to the Ultra Wide Band (UWB) systems for the larger 
bandwidth compared to the current wireless systems (such 
as Bluetooth, WiFi, GSM/UMTS), and, above all, for the 
low-power/high data rate technology. UWB is becoming 
widespread in wireless communications area and the 
research on UWB applications is getting more attention in 
the industry. The great advantages of UWB signals are given 
by their wall and other object penetration, allowing the 
UWB system to operate also in severe NLOS scenarios. 
These potentials, together with low cost trans-receiver, low 
transit power and low interference characteristics, make the 
UWB technology an excellent candidate for a wide range of 
measurement applications, such as wireless propagation 
modeling [1-3], localization for indoor and outdoor 
positioning [4-6] and short range applications [7-8]. In all 
the above-mentioned applications, it is important to know 
the propagation channel to maximize the system 
performance.  
The system performance maximization starts from the 
development of electromagnetic models in which the quality 
of wireless communications services could be identified by 
means of simple parameters. By searching these model 
parameters to match different channel characteristics, the 
channel model can be established. Many efforts and 
resources have been devoted in the last few years to 
characterize and model the UWB propagation channels, and 

several parameters have been proposed [1, 3]. In [3], based 
on the physical K-Generalized model, the γ parameter 
developed for observation of synthetic aperture radar (SAR) 
data and for studying the reverberating chamber propagation 
channel profiles [9-10], has been proposed to physically 
discriminate Line of Sight (LOS) and non-LOS (NLOS) 
UWB propagation conditions. In [1, 11], the kurtosis 
parameter k has been proposed to identify the typology of 
the link between the transmitting and the receiving antennas. 
Both of the two above mentioned parameters, i.e., the 
kurtosis k and the gamma-indicator γ, have been used in the 
past to discriminate channel profiles, but no comparison has 
been accomplished to establish which indicator has the best 
performance. A missing of real-time information on the 
channel condition (LOS/NLOS) can provide a severe 
decrease of the performance of an UWB system, especially 
in some applications such as localization for indoor 
positioning, where the real-time knowledge of the 
propagation channel profile is a very challenging task for the 
correct system characterization.  
In this paper, the two indicators, k and γ, are compared to 
establish which one has the best performance in 
discriminating indoor LOS/NLOS propagation conditions. 
The metric for comparing the performance is the standard 
error, hereinafter-called SE [12]. Since the traditional 
standard errors tend to under or overestimate true errors, the 
bootstrap method for standard error estimation, is also 
implemented [13]. Finally, the computational time for the 
above-mentioned indicators is also evaluated. It is important 
to note that, since this analysis is focused on improving the 
accuracy of the channel estimation, the Rice factor R is not 
considered here as a direct candidate parameter to identify 
LOS/NLOS condition. Although R is one of the most 
reliable index when a strong direct link component is 
present, it cannot discriminate small but consistent direct 
link component according to the minimum requirements for 
specifically UWB propagation channels [1, 3].   

The comparison is made according to a real set of data 
derived from UWB measurement campaign accomplished 
within a modern laboratory/office building in which the two 
above mentioned indicators have been evaluated in 
LOS/NLOS propagation conditions. 

The paper is structured as follows: in the section 2 an 
electromagnetic analysis of the employed UWB indicators 
is accomplished; in section 3 a meaningful set of 
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experimental results is shown and discussed. In sections 4 
and 5, the errors of the two indicators used for UWB 
channels discriminations are described and compared. 
Finally, in section 6, conclusions are drawn.  

2. Electromagnetic Theory of UWB Indicators 
In this section, a brief but exhaustive analysis of the 
employed UWB indicators is accomplished. Starting from n 
time series of data, i.e., of the electromagnetic field at the 
receiving antenna, the physical rationale of the two 
indicators is summarized. 

2.1. γ  - indicator 

The presence of the direct link within a generic UWB 
propagation channel can be characterized by analyzing the 
amplitude/power of the received electromagnetic field. In 
particular, the electromagnetic field within an UWB wireless 
propagation channel can be described by the Generalized K 
(GK) model [3] that is given by 
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where E2 is the power of the electromagnetic field, α, η and 
υ are the distribution parameters, Γ(·) is the Eulerian 
Gamma function, Kα-1(·) is the modified Bessel function of 
the second kind of order α -1 and I0(·) is the first kind zero-
order modified Bessel function. The GK is a three-parameter 
distribution that embodies in a unitary formulation the 
statistic models used to characterize different propagation 
channel [3, 9]. The three real and non-negative parameters, 
α, η and υ, dictate the GK distribution behaviour [3]. 
For the purpose of this study only η and υ (hereinafter 
termed as GK parameters) are accounted for, since they have 
been found to exhibit a pronounced sensitivity to the 
presence of a coherent component in the received field [3]. 
If a coherent component in the received field is 
contemplated, (1) degenerates in a Rice distribution, i.e. [3] 
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where only η and υ are present [3]. If one consider the R 
factor, i.e. the coherent to incoherent power ratio, (2) can be 
rewritten as follows 
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According to what above mentioned and comparing (2) to 
(3), the γ-indicator is obtained as a proper combination of 
the GK parameters given in terms of R [3] 
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where   E2  is the mean power of the received field and R is 
the Rice factor. It is important to note that the γ - indicator 
given by (4), depends on both R and the mean power of the 
received field [9]. To be independent by the channel 
parameter, i.e., the mean power of the received field, a 
normalization can be accomplished by dividing E 2  for the 
maximum received power [9] 
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The β parameter is the inverse of the peak-to-average 
power-ratio (PAPR) and, in the real-life cases, it is always 
smaller than one. The PAPR parameter has been largely 
discussed in literature [14]. As matter of fact, with the PAPR 
reduction techniques recently developed, PAPR values 
typically range from 3 to 7 dB for UWB applications that 
correspond to values of β that range from about 0.5 to 0.2. 
By using (5) in (4), a modified expression of the γ indicator 
can be obtained  
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It is now important to read the γmod behaviour given by (6) in 
terms of R parameter. When R ! 0 (generally R < 0.1) the 
γmod given by (6) is always smaller than one. Otherwise, 
(generally when R ≥ 0.1) γmod values are greater than one. 
Accordingly, this calls for two non-overlapped regions, i.e., 
[9] 
  ! mod "1  (7) 
when a small but consistent line of sight component, i.e., 
when a LOS condition is in place, and 
  ! mod <1  (8) 
when the NLOS conditions applies.  It is important to note 
that the γmod index exhibits a much greater sensitivity with 
respect to the R factor since it is able to discriminate the 
presence of small but consistent LOS components, that are 
considered negligible with the Rice factor analysis. Thus, 
γmod is useful to obtain a reliable and high throughput link in 
the employed propagation channels. 
 

2.2. B. Kurtosis 
The kurtosis, k, is a low-complexity statistical parameter that 
indicates the fourth order moment of the received signal 
amplitude. The kurtosis has been already used for 
identifying the UWB channel profile [1] and for the 
reverberating chamber propagation channel profiles [11]. By 
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considering eq. (3), kurtosis is mathematically defined as 
follows [15, 16] 
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where σ and  E  are the standard deviation, the mean and the 
ith received field  Ei

, respectively, and n is the dimension of 
the acquired time series. The kurtosis index k is supposed to 
be high in case of LOS conditions while it has low values 
under NLOS conditions. The parameter k does not need any 
application of estimation algorithms on the received field 
because it is calculated directly by using the received field 
samples. This makes k really simple to manage and the 
identification process easy and quick. A limitation on the 
use of this indicators is given by the not exactly definition of 
a threshold for the different profile (LOS/NLOS). In other 
words, the k analysis does not provide analytically a 
physical threshold for distinguishing the different typologies 
of channel profile in non-overlapped classes; only basing on 
the knowledge of the environment typology, k can 
determine, in a quick way, if the LOS or NLOS channel 
profile is in place. 
 

3. Experimental Results 
In this section some meaningful results are shown and 
discussed. The experimental data are obtained from indoor 
UWB experiments (see Fig. 1). In [1], experimental results 
were carried out in a modern indoor University laboratory; 
the considered scenario is shown in Fig. 1 (taken from [1] 
with permission of the authors). The data is acquired with a 
sampling rate equal to 20.48 GHz, i.e., a sampling time of 
48.83 ps. Impulse response measurements are gathered over 
a 7 x 7 square 15 cm spaced measurement grid, covering 
about a 90 cm x 90 cm surface (Fig. 1). Two UWB channel 
profiles have been accomplished: the line-of-sight (LOS) 
and the non-LOS (NLOS) channels. The k and γ values are 
evaluated and the results are reported in Table I for the LOS 
and NLOS cases, respectively. The LOS cases correspond to 
UWB propagation environments Room F1 and F2 in Fig. 1 
(called LOS1 and LOS2 in Table I, respectively), in which 
the transmitting and the receiving antennas are placed in the 
same room with distances 9.5 m and 5.5 m, respectively. 
The NLOS cases are relative to different rooms in which the 
transmitting and the receiving antennas are placed. In these 
conditions, at least one wall that totally obstructs the first 
Fresnel zone is present between the antennas, i.e., NLOS 
channels are accomplished. In particular, the distance 
between the transmitting and the receiving antennas is equal 
to 10 m and 17 m, that corresponds to Room H and B in Fig. 
1, (NLOS1 and NLOS2 in Table I, respectively). The k and γ 
values are in agreement with the theory reported in section II 
and they are listed in Table I. In particular, in the LOS cases, 
the k values are higher than the corresponding ones for the 
NLOS cases, while the obtained values are greater than the 
physical threshold for the γ parameter (see Table I). It is 
important to note that although several studies have been 

accomplished with the k index, no physical thresholds for 
discriminating the LOS and NLOS channel profiles is 
analytically provided. Hence, it is very challenging to 
discriminate the correct channel profile if there is no a priori 
knowledge of the environment. By a quantitative analysis 
the comparison of the two indicators used for distinguishing 
LOS and NLOS scenarios shows that γ exhibits a greater 
granularity with respect to k in discriminating LOS 
conditions. Concerning the computational time–consuming, 
k is faster than γ. As matter of fact, by comparing the two 
algorithm with a 3.8 GHz quad-core 7th generation intel core 
i7 processor with 16 GB 1333 MHz memory, the estimation 
time of k parameter is equal to 1.2 s, smaller than 3.0 s of the 
corresponding γ parameter. Although the difference between 
the two parameters in terms of computational time in 
evaluating the LOS/NLOS condition can be considered 
negligible (smaller than 2 s), it can be important in 
applications as localization and tracking. In fact, indoor 
accurate positioning requires to know if the distance 
estimation is made under LOS or NLOS since the 
corresponding bias is significantly different. If changes from 
LOS to NLOS conditions are not quickly detected the error 
can affect the estimated distance and decrease the accuracy 
of the indoor positioning. 
 

 
 

Figure 1: Scheck of the office/building used for UWB 
measurements, taken from [1] with permission of the 
authors 

 
 
All those localization-based applications, which require 
accurate indoor positioning, could suffer of a 2 sec larger 
latency. In summary, from the experiments it follows that 

• LOS and NLOS channel profiles are not overlapped 
both in the γ  than in the k cases. A physical 
threshold for discriminating the two channel 
profiles is defined in the γ  - case but no threshold 
in the k case is given. 
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• From a computational time point of view 
performance of k are better than the corresponding 
one of the γ - case. This is especially worth in those 
all localization-based applications. 

 
 

Table 1: υ, η, β, γ and k values for LOS/NLOS scenarios. 
Channel 
Profile υ η β γ k 

LOS1 9.78 0.03 0.198 84962.18 19.60 
LOS2 7.72 0.04 0.201 28167.80 39.93 

NLOS1 0.08 0.24 0.193 0.27 6.95 
NLOS2 0.06 0.28 0.191 0.12 4.85 

 

 

4. Standard Error 
The focus of this section is to evaluate the standard error 
occurred when γ or k parameters are used to identify the 
channel LOS/NLOS conditions. The Standard Error, SE, is a 
measure of the accuracy with which the measured parameter 
represents the true value and is expressed as a number [12]. 
The SE is defined as the standard deviation of the statistic 
parameter under evaluation, weighted for the sample size n. 
If one calls SEk the standard error in the case of k parameter, 
it is given by [12] 
 

 
  
SEk = 2 6n(n! 2)(n! 3)

(n+1)2(n+5)(n+ 3)
 (10) 

 
where n is the sample size. For n large (usually greater than 
40), SEk is equal to 

 
  
SEk !

5
n

 (11) 

For the γ - index, it can be noted that the standard error of γ, 
SEγ, is related to the SE of the η and υ parameters. By (6), it 
follows that [3] 
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Hence, the SE is proportional and inversely proportional to 
the square root of R for υ and η parameters, respectively [3]. 
R is given by the power ratio of the direct link between the 
transmitting and the receiving antenna to the replicas of the 
transmitted signal, i.e. 

 
  
R = E2

2! E
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where E 2 and  ! E
2 are the power of the mean and the variance 

of the received field, respectively. According to the standard 

errors of the mean and the variance,  SEE and SE
!E
2

respectively, one obtains [12] 

 

 
  SEE = ! E n                              (15)

 and 

 
  
SE

! E
2 =

2
n"1

! E
2  (16) 

 

Hence, the SE of the R factor is evaluated as [12] 
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where ≅ means for n large (usually n > 40). According to 
(12)-(16) the SEγ for n large is given by 
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A comparison between the standard error of both γ and k 
parameters is shown in Fig.2. It is important to note that, 
according to the literature and by considering the UWB 
indoor data of section 3, β values equal about to 0.2 are in 
place. The standard errors are reported in function of the 
number of samples used for the simulation. It can be noted 
that the two errors have the same trend although the SEk 
(dotted blue line) is always smaller than the corresponding 
one of the γ - case (continuous red line). As matter of fact, 
for small sample sizes (n  ≤ 40) the gap between the two 
errors is 0.5 that decreases up to 0.1 for n > 40, see Fig. 2.  
 

 
Figure 2: Comparison between SEk and SEγ evaluated for 
different value of β parameter. 
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5. Bootstrap Error  
The standard error given by (11) in the kurtosis case, is 
function only of the number of sample n and it does not 
depend on the distribution shape. In order to improve the 
statistical accuracy of the estimated parameters, such as the 
kurtosis, a method that takes into consideration also the 
distribution is needed. Bootstrap is one of the nonparametric 
techniques for statistical inference that are called resampling 
method [13]. The bootstrap method is based on the random 
resampling of the original data [13]. In other words, the 
bootstrap method involves repeatedly drawing random 
sample from the original data with replacement. For 
instance, if the original data set is e = (e1, e2, …, e7) with n = 
7 and by taking m samples of the same size n as the original 
samples with replacement from the original sample, a new 
vector e* is obtained. This new vector of m-size is the first 
bootstrap sample. This process of the random resampling 
with replacement must be made B times where typical 
values for B range from 50 to 200 for standard error 
estimation [13]. In Fig. 3 a sketch of bootstrap error 
schematization is shown. 

 
Figure 3: Bootstrap error method schematization 

 
 
After the resampling with replacement to each bootstrap 
samples is in place, bootstrap replications k(eB) are obtained 
by calculating the value of statistics k evaluated for e*

B. Let 
us call k(e*

B) these bootstrap replications since the kurtosis, 
k, is the evaluated statistic. Hence, for each replications 
k(e*

B) the bootstrap standard error are estimated as follow 
[13] 

 

  

SEboot
(!) =

k(e
b
* )" µ

eb
*

#
$%

&
'(

2

b=1

B

)

B "1

*

+
,

-
,

.

/
,

0
,

1/2

 (19) 

 
where 

   
µ

eb
* (!) =

k(eb
* )

b=1

B

"

B  (20) 
 

is the mean of the bootstrap samples. In Fig. 4 a comparison 
among the bootstrap error, in the case of the kurtosis, and 
the standard error of γ - and of k – indicator, is shown. The 
bootstrap error (black line) is higher than the corresponding 
standard error in the case of γ - the and k – indicator. It must 
be noted that k evaluation involves the residual to the 4th 
power and hence, it is influenced by extreme values that can 
distort the final results. The approach to use random 
bootstrap replication can avoid possible bias (due to the 
extreme distribution values) in the error analysis that can 
degree the accuracy of the method [13]. Finally, by 
comparing the two algorithm with a 3.8 GHz quad-core 7th 
generation intel core i7 processor with 16 GB 1333 MHz 
memory, the bootstrap algorithm has about 2 s processing 
delay with respect to the SE algorithm for the γ - case. 

 

 
Figure 4: Comparison among SEk , SEγ and the SE 
evaluated by using the bootstrap method simulation. 

 
 
In summary, by analyzing the obtained results, it follows 
that: 

• the kurtosis procedure is really fast since it does not 
require high complexity evaluation with respect to γ 
procedure where an estimation process of β and R are 
needed before its application; 

• If the SE error is evaluated, both indicators show a 
standard error always small; in particular the SE of k is 
always smaller than the corresponding one in the γ cases;  

• to further improve the accuracy of SE, a bootstrap error 
technique must be employed. Although an improved 
accuracy is pointed out, the bootstrap error technique 
calls for a slower k procedure with respect to γ standard 
error. In conclusions, the evaluation of the error 
corresponding to γ indicator when the number of 
samples is large (usually greater than 40) is faster and 
gives best performance in discriminating LOS/NLOS 
propagation channels with respect to the corresponding 
one obtained by bootstrap error procedure in the k case. 

 



18 
 

6. Conclusions 

In this paper, a comparison between γ and k indicators for 
defining UWB channel profiles, has been accomplished in 
terms of SE. The comparison has been developed according 
to experimental data gathered within a modern 
laboratory/office building in which the channel profiles 
(LOS/NLOS) have been obtained. A qualitative and a 
quantitative analysis show that: 

• γ and the k parameters values are in agreement with the 
expectation. The two indicator correctly distinguish in 
two non-overlapped value regions the LOS/NLOS 
channel profiles;  

• γ exhibits a physical threshold for distinguishing 
LOS/NLOS profiles that is not present in the k case; 

• although k has a computational time smaller that the 
corresponding γ case, a bootstrap procedure is needed in 
the kurtosis case [13] making k implementation longer 
than the corresponding γ. In other words, the 
computational time of the SEγ are smaller with respect 
to the corresponding  bootstrap error technique applied 
in the k case; 

• Finally, the γ error is smaller with respect to the 
bootstrap error applied in the k case when the number of 
samples are large (usually greater than 40). 
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