Time- and Frequency-Domain Evaluation of Stochastic Parameters on Signal Lines

Main Article Content

P. Manfredi
I. S. Stievano
F. G. Canavero

Abstract

This paper focuses on the derivation of enhanced transmission-line models allowing to describe, in time and frequency domain, a realistic interconnect with the inclusion of external uncertainties, like process variations or routing and layout uncertainties. The proposed method, that is based on the expansion of the well-known telegraph equations in terms of orthogonal polynomials, turns out to be accurate and more efficient than alternative solutions like Monte Carlo method in determining the transmissionline response sensitivity to parameters variability. Moreover, an implementation into standard circuit analysis tools such as SPICE is possible. Two application examples based on PCB structures of common use in commercial packages conclude the paper.

Downloads

Download data is not yet available.

Article Details

How to Cite
Manfredi, P., Stievano, I., & Canavero, F. (2012). Time- and Frequency-Domain Evaluation of Stochastic Parameters on Signal Lines. Advanced Electromagnetics, 1(3), 85-93. https://doi.org/10.7716/aem.v1i3.6
Section
Research Articles

References

  1. D. Xiu, G. E. Karniadakis, The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM Journal of Sci. Computation 24(2): 619–622, 2002.
    View Article

  2. C. Chauviere, J. S. Hesthaven, L. Lurati, Computational Modeling of Uncertainty in Time-Domain Electromagnetics, SIAM Journal of Sci. Computation 28(2): 751–775, 2006.
    View Article

  3. R. Gaignaire, S. Clenet, B. Sudret, O. Moreau, 3-D Spectral Stochastic Finite Element Method in Electromagnetism, IEEE Trans. on Magnetics 43(4): 1209–1212, 2007.
    View Article

  4. R. S. Edwards, A. C. Marvin, S. J. Porter, Uncertainty Analyses in the Finite-Difference Time-Domain Method, IEEE Trans. on Electromagn. Compat. 52(1): 155–163, 2010.
    View Article

  5. M. Liu, Z. Gao, J. S. Hesthaven, Adaptive Sparse Grid Algorithms with Applications to Electromagnetic Scattering Under Uncertainty, Applied Numerical Mathematics 61(1): 24–37, 2011.
    View Article

  6. K. Beddek, Y. Le Menach, S. Clenet, O. Moreau, 3-D Stochastic Spectral Finite-Element Method in Static Electromagnetism Using Vector Potential Formulation, IEEE Trans. on Magnetics 47(5): 1250–1253, 2011.
    View Article

  7. K. Beddek, S. Cl’enet, O. Moreau, V. Costan, Y. Le Menach, A. Benabou, Adaptive Method for Non-Intrusive Spectral Projection—Application on a Stochastic Eddy Current NDT Problem, IEEE Trans. on Magnetics 48(2): 759–762, 2012.
    View Article

  8. I.S. Stievano, P. Manfredi, F.G. Canavero, Parameters Variability Effects on Multiconductor Interconnects via Hermite Polynomial Chaos, IEEE Trans. Comp. Pack. & Man. Tech. 1(8): 1234–1239, 2011.
    View Article

  9. P. Manfredi, I.S. Stievano, F.G. Canavero, Alternative SPICE Implementation of Circuit Uncertainties Based on Orthogonal Polynomials, Proc. 19th IEEE Conf. Electri. Perfor. Electron. Pack. Sys., San Jose, CA, U.S.A., pp. 41–44, 2011.

  10. R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements. A Spectral Approach, Springer-Verlag, New York, 1991.

  11. A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, 1965.

  12. C.R. Paul, Analysis of Multiconductor Transmission Lines, Wiley, New York, 1994. K. Umashankar, Introduction to Engineering Electromagnetic Fields, World Scientific Publishing, Singapore, 1989.

  13. A. Rong, A.C. Cangellaris, Interconnect Transient Simulation in the Presence of Layout and Routing Uncertainty, Proc. 19th IEEE Conf. Electri. Perfor. Electron. Pack. Sys., San Jose, CA, U.S.A., pp. 157–160, 2011.

  14. B.C. Wadell, Transmission Line Design Handbook, Artech House, Boston, 1991.