Wave Propagation Solution for Transverse Electric Mode in a Graded Interface between Left-Handed and Right-Handed Material

Main Article Content

B. N. Pratiwi
A. Suparmi
C. Cari


Wave propagation for transverse electric (TE) mode in a graded interface between left-handed and right-handed material has been investigated by using asymptotic iteration method. By using hyperbolic functions for negative permittivity and negative permeability, we obtained the graded graphs of permittivity and permeability as a function of material thickness. Maxwell equation for the dielectric with the hyperbolic function in permittivity and permeability has been reduced to second orde differential equation. The second orde differential equation has been solved by using asymptotic iteration method with the eigen functions in complementary error functions. The eigen functions explained about the wave propagation in a graded interface of material. The distribution of the electric field and the wave vector were given in approximate solution.


Download data is not yet available.

Article Details

How to Cite
Pratiwi, B. N., Suparmi, A., & Cari, C. (2016). Wave Propagation Solution for Transverse Electric Mode in a Graded Interface between Left-Handed and Right-Handed Material. Advanced Electromagnetics, 5(3), 80-85. https://doi.org/10.7716/aem.v5i3.442
Research Articles
Author Biography

B. N. Pratiwi, Sebelas Maret University

Physiscs Department, Graduate Program, Sebelas Maret University


  1. T. J. Cui , D. R. Smith, R. Liu, Metamaterials: Theory, Design, and Applications, New York: Springer Science Business Media, 2010.

  2. A. S. Husein, C. Cari, A. Suparmi, M. Hadi, Approximate solution of wave propagation in transverse magnetic mode through a graded interface positive-negative using asymptotic iteration method, arXiv: 1506.02346v1 [cond-mat.mtrl-sci], 2015.

  3. V. G. Vaselago, The electrodynamics of substance with simultaneously negative, Soviet Physics Uspekhi, 10: 509-514, 1968.
    View Article

  4. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic meso structures, Physical Review Letters, 76 : 4773–4776, 1996.
    View Article

  5. J. B. Pendry , A. J. Holden , D. J. Robbins, W. J. Stewart, Magnetism from Conductors And Enhanced Nonlinear Phenomena, IEEE Transactions onn Microwave Theory And Techniques, 47: 2075-2084, 1999.

  6. J. B. Pendry, Negative refraction makes a perfect lens, Physical Review Letters, 85: 4184-4187, 2000.
    View Article

  7. D. R. Smith, W. J. Padilla, D. J. Vier, S. C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters, 84: 4184-4187, 2000.
    View Article

  8. M. Y. Wang, J. Xu, J. Wu, B. Wei, H. L. Li, T. Xu, D. B. Ge, FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials, Progress In Electromagnetics Research, 81: 253-265, 2008.
    View Article

  9. B. N. Mohapatra, R. K. Mohapatra, FDTD optical simulation to enhance light trapping, International Journal of Scientific & Engineering Research, 4: 2890-2897, 2013.

  10. M. Dalarsson, P. Tassin P, Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material, Optics Express, 17: 6747-6752, 2009.
    View Article

  11. M. Dalarsson, M. Norgren, T. Asenov, N. Doncov, Arbitrary loss factors in the wave propagation between Rhm and Lhm media with constant impedance througout the structure, Progress in electromagnetics research 137: 527-538, 2013.
    View Article

  12. N. Dalarsoon, Ab initio analytical approach to spectral behavior of graded interfaces incorporating ngative-index nanocomposites, Proc. 1st International Workshop on Nanoscience & Nanotechnology IWON, Belgrade, Serbia and Montenegro, p 194, 2005.

  13. A. S. Husein, C. Cari C, A. Suparmi, M. Hadi, Approximate solution wave propagation in TM mode through a graded interface of permittivity/ permeability profile using asymptotic iteration method, AIP Conference Proceedings 1719, Bali, Indonesia, p 030048, 2016.

  14. A. Suparmi, C. Cari, B. N. Pratiwi, U. A. Deta, Solution of D dimensional Dirac equation for hyperbolic tangent potential using NU method and its application in material properties, AIP Conference Proceedingvol 1710, Solo, Indonesia, p 030010, 2016.

  15. C. Cari, A. Suparmi, M. Yunianto, A. S. Husein, Solution of D dimensional Dirac equation for coulombic potential using NU method and its thermodynamics properties, AIP Conference Proceeding 1710, Solo, Indonesia, p 030009, 2016.

  16. C. Cari, A. Suparmi, Bound state solution of dirac equation for 3d harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach, AIP Conference Proceeding 1615, Bandung, Indonesia, p 101, 2014.

  17. A. Suparmi, C. Cari, U. A. Deta, Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials, Chin. Phys. B, 23: 090304-1, 2014.
    View Article

  18. A. Rostami, H. Motovali, Asymptotic iteration method: a powerfull approach for analysis of inhomogeneus dielectric slab waveguide, Progress In Electromagnetics Research B, 4:171 – 182, 2008.
    View Article

  19. A. Soylu, O. Bayrak, I. Boztosun, k State solutions of the dirac equation for the eckart potential with spin and pseudospin symmetry, Journal of Physics A: Mathematical and Theoretical, 41 , 2008.
    View Article

  20. H. Ciftci, R. L. Hall, N. Saad, Asymptotic iteration method for eigenvalue problems, J. Phys. A: Math, 36: 11807, 2003.
    View Article

  21. M. Abramowitz, A. Irene, Hanbook of Mathematical Function with Formula, Graphs and Mathematical Tables, Washington DC: United stated department of commerce) p 20402, 1970.