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Abstract

Reducing system complexity and cost in synthesizing a
sparse array antenna design is a challenging task for
practical communication systems, such as radar systems and
space communication. In this paper, a hybrid technique to
synthesize a linear sparse array antenna design is described.
This technique is developed using two methods. The first
method is a combinatorial approach that applies cyclic
difference sets (CDS) integers to significantly reduce the
number of antenna elements. The approach and procedure
used to apply the new CDS method to configure a linear
sparse array, with significant reduction of the spatial
antenna dimension, is described. The second method,
applied to the array result of the first method, is amplitude
tapering using a binomial array approach to reduce the
sidelobes level (SLL). The simulation and measurement
results of the sample sparse array design showed that the
SLL was reduced in comparison to the sparse array design
using only the combinatorial CDS method.

1. Introduction

Array antenna configurations are one of most useful
antenna configurations in communication systems because
they can provide a narrow beam width, variations in the
beam pattern, directivity and high gain. High performance
array antennas with very narrow beam widths and high
directivity require large spatial apertures and a large number
of antenna elements. These restrictions impact the antenna
array sizing; thus, the communication system cost will be
higher because of the many radio frequency
(RF)/microwave components, filters and amplifiers that are
required for each antenna element [1]. Therefore, reducing
the number of antenna elements is a straightforward method
to reduce the cost of a communication system.

In recent decades, antenna array designs have been
developed with sparse element spacing characteristics. A
sparse antenna array will achieve a desired radiation pattern
with the minimum number of antenna elements, which is
particularly useful in practical communication systems
where the antenna weight and size are limited, such as in
radar-phased antenna arrays, astronomy communications
and satellite communications[1-2].

In the literature, various techniques have been proposed
to configure sparse array antenna designs. Generally, there

are five sparse array antenna design methods that have been
published; they can be classified as deterministic and
generic  algorithm  methods [3-9], stochastic and
probabilistic  methods [10-12], general polynomial
factorizations [13-15], combinatorial methods [16-18] and
mutual coupling effects [19-21]. The combinatorial method,
using cyclic difference sets (CDS), is a suitable design for a
sparse array antenna with high efficiency, a simple process
and minimal computation time compared with other sparse
array methods.

The primary issue of the combinatorial CDS method is
the sidelobes level (SLL) performance. When applying the
CDS integer to the sparse array configuration, the
performance of the SLL is lower when compared to that of
the full array configuration. In some applications, such as a
radar system, the SLL performance will impact the scanning
process and the radar measurement system. Therefore, SLL
performance improvement is an important issue in sparse
array antenna design.

The classical solution to improve array performance is
amplitude tapering to define the excitation coefficients for
each antenna element. Some methods have been developed
by antenna designers for the amplitude tapering technique,
such as the binomial, Dolph-Chebyshev, Taylor and cosine
approaches. Each method has different characteristics and
advantages for array performance and configuration.

In this study, we developed a combined approach using
the combinatorial CDS method with amplitude tapering
using a binomial array. We chose a binomial array because
the distribution of coefficient is in staircase form, based on
Pascal’s triangle, which matches with our new approach
using CDS configuration element distribution. After the
introduction in section 1, we describe the CDS integer
approach and its application in the sparse array design in
section 2. In section 3, we describe the hybrid technique,
which applies amplitude tapering to the CDS configuration,
and the proposed binomial array approach. In section 4, the
simulation of a sample linear sparse array design to verify
the proposed technique is presented, and the conclusion is
presented in section 5.

2. New Combinatorial CDS Linier Sparse Array
Design Approach

Difference sets are branches of the mathematical
combinatorial theory, which are suitable for the design of a



sparse array antenna; this reduced a significant number of
array elements [16-17]. By definition, a (V, K, A) difference
set is a set of K unique integers based on V integers from all
populations and 4 is possible unique differences appears
sequence. In sparse array design, K unique integers can be
used as a series of array elements based on V integers of full
array element series.

From the set D ={d,, d;, ...,dx_1}, With0 < di < (V — 1),
such that for any integer 1 < a < (V — 1),

where: d; - d; = a (mod V),i # j 1)
These three parameters (V,K,A) are used to describe a
difference set with only two independent parameters
because there are K(K —1) possible difference

(d; - dj) with i not equal to j and because each (V — 1)

possible unique differences appears exactly A times.

The three CDS parameters will have the following relation:
K(K-1) = A(V-1) 2)

Example CDS parameters and integers are

D1{1,3,4,59); where V =11,K =5, A =2

D2{1,2,4}; whereV=7,K=3,A=1

D3{3,6,7,12,14}; where V =21, K =5, A=1

D4{0,1,2,4,5,10}; where V =15, K =7,A=3

D5{1,4,5,6,7,9,11,16,17}; where V=19, K =9,A=4

The construction of a linear sparse array using CDS [16] is
developed by using “one” and “zero” sequences following
the CDS integers. From difference sets D, we may construct
a sequence one and zero.

AV = {ai}i = 0,1,2,..,V —1 (3)
where ¢; = 1if jisinDand a; = 0if j is not in D. For
example, D1{1,3,4,5,9} gives rise to AV = {01011100010}.
The linear sparse array configuration can be constructed by
starting with an empty lattice of element locations spaced
M2 apart, placing an element at each location where a
sequence has a ”1” and skipping each location where the
sequence has a ”0” [16]. This approach can reduce the array
by a significant number of elements from a full array
configuration or minimize the array to approximately half
of the number of elements (K /V).

The challenge when using the CDS approach for sparse
array design is reducing the high SLL as compared to a full
array configuration [22]. In antenna array design, amplitude
tapering is a classical solution to improve SLL performance
by controlling amplitude excitation for each array element.
The basic idea in amplitude tapering is the application of a
normal distribution or a Gaussian distribution model to the
power distribution. Following this principle, a new strategy
for combinatorial CDS application to linear sparse array
design is developed.

The new strategy for applying a CDS integer in the
sparse array configuration is applied following the
characteristic of the amplitude tapering distribution
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function, which is the primary contribution of the radiation
pattern emanating from the center of the array distribution
(Gaussian distribution model). Using this approach, the new
design procedure is as follows:
1. Split the full array configuration into two sides
from the center of the array.
2. Define the array configuration as a representative
of the V integer series for each side.
3. Apply the CDS K integer series for the sparse
array configuration on each side.
4. Reduce the spatial antenna dimension for each side
of the array configuration.

For example, a 32-element linear array microstrip
antenna with inter-element spacing of A/2 is reduced to a
16-element linear sparse array using our combinatorial CDS
method. We choose a CDS (15,7,3) for each side of the
array configuration (16 elements per side). The sparse array
element configuration following a CDS K -integer series
places the element in the configuration of a D set integer
(01245810) element position, with one element in the
center of the array for each side. The array configuration is
shown in Fig. 1.
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Figure 1: Design procedure of new CDS approach

3. Hybrid Technique Applying Binomial
Amplitude Tapering

The proposed new configuration combinatorial CDS
method for designing a linear sparse array antenna in the
previous section is an effective method to reduce a
significant number of elements, but this method still has the
challenging issue of poor SLL performance. In the
combinatorial CDS method, SLL performance was
described using a relation between K and V [16, 22] as
follows:

PSL = 10log|<(1 - 7)]

+10 log [0.8488 + 1.128 log V]dB (4)

Where PSL is peak SLL. The approximation is valid for
V >50and K <V/2[16, 23].

Using the approach in (4), the SLL performance in a
combinatorial CDS is poor. In some applications, such as
radar systems and satellite communication, the SLL
performance is important for an accurate scanning result. To



improve the SLL performance, an amplitude tapering
solution is proposed. The procedure follows the new strategy
combinatorial CDS configuration as described in section 2
and controls the excitation of each element by amplitude
tapering.

Amplitude tapering is a type of non-uniform amplitude
excitation for array elements. The most practical approaches
and methods to determine amplitude tapering include a
binomial array, a Dolph-Chebyshev array and a Taylor array.
Each approach has advantages and disadvantages, depending
on the desired design target and antenna array application
requirement. Usually, a compromise must be made between
the primary array antenna parameter, the half-power beam
width (3-dB beam width), the directivity and a low SLL. As
the SLL decreases, the half-power bandwidth decreases and
typically, the directivity increases [24- 25].

To apply amplitude tapering to the new strategy CDS
configuration, the binomial array can be applied directly, i.e.,
without a different excitation coefficient, unlike the Dolph-
Chebyshev and Taylor distribution models. The coefficient
amplitude tapering methods for the Dolph-Chebyshev array
and the Taylor array are similar. The coefficient tapering is
distributed to all elements, with slight differences among
them. The application significantly impacts array
performance, especially after reducing the number of
elements in the array distribution using CDS integers. The
result is different when binomial array distribution, which
follows Pascal’s triangle, is applied; most of the distribution
is in the center of the array. This model is similar to the
proposed configuration of the CDS element position, which

focuses on placing the array element in the center of the array.

The coefficients for the edge distributions on both sides are
small, especially for a large number of array elements, and
can be neglected without any significant impact to array
performance.

The binomial array was investigated and proposed by J.S
Stone [24] to synthesize a pattern without sidelobes.
Consider an array factor from two elements as follows:

AF = 1 + eJ¥ (5)

Where ¥ = kd cos 6

For a broadside array (8 = 0) when inter-element spacing
is less than half of a wavelength, the array factor has no
sidelobes [24]. Continuing for three elements, the array
factor produces the following:

3Elements AF = (1 + e /¥)(1 + e/¥)
(1 + e¥)?
1+2e/¥ + /¥

(6)

This representation is the square of a two-element array
factor without a sidelobe product and will also not have
sidelobes. A similar approach is applied for four elements up
to N elements as follows:

4elements AF = (1 + e /%)
=1+3e¥ +3e/¥+e/¥

()
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and for N elements, the array factor will become (1 +
e ¥)N-1 and
(8)

N elements AF = (1 + e /¥)N~1

Mathematically, the array factor shown in (8) represents a
distribution of amplitude excitation for each element. Three
elements have a ratio of 1:2:1 amplitude excitation and four
elements have a ratio of 1:3:3:1. The excitation amplitude
distribution can be easily obtained by expansion of the
binomial in (8). Using Pascal’s triangle, the distribution is as
follows:

N=1 1

N=2 1 1

N=3 1 2 1

N=4 1 3 3 1

N=5 1 4 6 4 1

N=6 1 5 10 10 5 1
N=7 1 6 15 20 15 6 1
N=8 1 7 21 3% 3H 21 7 1
N=9 1 8 28 5 70 56 28 8 1

Based on the expansion of Pascal’s triangle above, the
coefficient for the edge distribution of both sides is small
compared to the coefficient in the center distribution. This
also occurs in the sparse array configuration based on the
new CDS approach in which the eliminated element is
placed on the edges of both sides. The new proposed CDS
approach with binomial array amplitude tapering is therefore
a hybrid technique linear sparse array antenna.

4. Simulated and Measured Result

To validate the proposed hybrid technique, as an example,
a linear sparse array design for a 16-element linear full array
is reduced to an 8-element linear sparse array using the
procedure described in the previous section. In the
simulation, a linear microstrip array antenna is used. It is
designed at a frequency of 5 GHz and uses a substrate
material of Taconic TLY-5 (g, = 2.2) with a thickness = 1.58
in. Using Computer Simulation Technology (CST)
microwave studio 2014 (https://www.cst.com) software
simulation, we start by developing the 16-element full-array
configuration as shown in Fig. 2. This configuration is the
basis and parameter comparison for designing the linear
sparse array antenna. The simulation and measurement
results of s-parameter and radiation performance are shown
in Fig. 3.
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Figure 2: 16-element full-array antenna (d=0.5))
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Figure 3: Radiation performances of 16-element full-array
antenna (d=0.51)

The design result of the 16-element full-array antenna
was a gain of 18.8 dB with a half-power beam width of 4.5°
and an SLL of -13.6 dB. The next step in designing a linear
sparse array is splitting the configuration into two sides of
eight elements each. CDS (7, 3, 1) is then applied to this split
configuration as shown in Fig. 4a.

Sl S |
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b. Reduced spatial antenna dimension

Figure 4: Design process of 8-element sparse array

In the next step of the sparse array design, the spatial
dimension is reduced by decreasing the antenna length
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(substrate) at the edges of both sides, resulting in the final
configuration as shown in Fig. 4b. The simulation and
measurement results of the s-parameter and the radiation
performance are shown in Fig. 5.
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Figure 5: Radiation performances of 8-element sparse array
by applying CDS (7, 3, 1)

The simulation and measurement results show that the
SLL of the radiation pattern linear sparse array using the
CDS method is higher than that of the full-array
configuration, as shown in Fig. 5. The SLL simulation is -
12.0 dB with a 3 dB beam width of 7.8° and a gain of 16.1
dB.

The last step of the design process is to apply the
amplitude tapering using a binomial array. For N = 16, the
expansion of Pascal’s triangle is 1, 15, 106, 462, 1386, 3038,
5014, 6463, 6463, 5014, 3038, 1386, 462,106, 15, 1. The
amplitude tapering coefficient for each element is shown in
Table 1.

The coefficients and relative amplitude for each element
listed in Table 1 is applied to the eight elements remaining
after reduction by the CDS sparse configuration, i.e., element
numbers 4, 6, 7, 8,9, 10, 11 and 13.



Table 1: Amplitude Tapering Coefficients.

Element Amplitude
Number Coefficient Attenuate
(dB)
1 0.0001 ~40.00
2 0.0020 -26.99
3 0.0200 -16.99
4 0.0700 -11.55
5 0.2100 6.78
6 0.4700 3.28
7 0.7800 -1.08
8 1.0000 0.00
9 1.0000 0.00
10 0.7800 -1.08
11 0.4700 3.28
12 0.2100 6.78
13 0.0700 -11.55
14 0.0200 -16.99
15 0.0020 -26.99
16 0.0001 -40.00
0 -
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Figure 6: Radiation performances of 8-element hybrid
technique sparse array antenna.
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The simulation and measurement results of the proposed
hybrid technique are shown in Fig. 6. The SLL simulation is
-22.7 dB, a significant improvement over that of the
combinatorial CDS linear sparse array. The implication of
amplitude tapering is reduced directivity and a wider beam
width, which are the compromises when the SLL is a
priority in the antenna design requirements. The overall
performance comparison is shown in Table 2.

Table 2: Performance Comparison of the hybrid
technique for a 16-Element Array

Radiation
Elements Performances
Array & 3dB
Configuration ~ Aperture Gain Beam SLL
Length (dB) width (dB)
©)
1 Full Array 16 188 45 -136
(16.83%) ' ' '
CDS Sparse 8
2 Array (10.78%) 16.1 78 -12.0
Hybrid 8
3  Technique 145 131 -22.7
Sparse Array (10.782)

Using the same design procedure, the proposed hybrid
technique is applied to the design of a 32- and a 64-element
full array antenna to a sparse array configuration. The
performance results are shown in Tables 3 and 4.

Table 3: Performance Comparison of the hybrid
technique for a 32-Element Array

Radiation
Elements Performances
No Array & 3dB
Configuration  Aperture  Gain Beam SLL
Length (dB) width (dB)
@)
1  Full Arra 32 21.8 22 -136
y (32.942) : '
CDS Sparse 16
2 Array (24.890) 19.2 3.2 -11.9
Hybrid 16
3 Technique 16.1 88 -22.1
Sparse Array (24.892)

The overall performance comparison for larger number
of elements is shown in Table 4. It is observed that the
proposed hybrid technique has better efficiency for larger
number of array (massively array) with significantly reduced
number of array element and spatial antenna dimension.
Furthermore, the simulation computation time speed
proposed hybrid technique has better than CDS method and



full array configuration. Using CST software simulation for
16-element array, the proposed technique has 424,116 mesh
cells compared to 532,980 mesh cells for CDS method and
741,636 mesh cells for full array configuration. It is shown
significant reduced computation time speed for time domain
solver.

Table 4: Performance Comparison of the hybrid
technique for a 64-Element Array

Radiation
Elements Performances
No Array & 3dB
Configuration ~ Aperture Gain Beam SLL
Length (dB) width (dB)
©)
Full Array 64
1 (65.170) 24.8 06 -232
CDS Sparse 32
2 Array (63.16)) 22.3 0.72 -10.9
Hybrid 16
3  Technique (26.9) 17.3 6.6 -21.1
Sparse Array ‘

5. Conclusions

A new hybrid technique for the design of a linear sparse
array antenna is described. The proposed method combines
a new CDS approach with an amplitude tapering binomial
array. The proposed new CDS configuration is a reduced
spatial dimension array antenna that yields a significant
reduction in the number of elements. The proposed hybrid
technique for sparse array antenna design shows an
improved SLL compared to both a combinatorial CDS
linear sparse array antenna and a uniform amplitude full-
array configuration. The hybrid design has a significantly
reduced number of elements, antenna dimensions and
computation time speed.
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