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Abstract 
Reducing system complexity and cost in synthesizing a 
sparse array antenna design is a challenging task for 
practical communication systems, such as radar systems and 
space communication. In this paper, a hybrid technique to 
synthesize a linear sparse array antenna design is described. 
This technique is developed using two methods. The first 
method is a combinatorial approach that applies cyclic 
difference sets (CDS) integers to significantly reduce the 
number of antenna elements. The approach and procedure 
used to apply the new CDS method to configure a linear 
sparse array, with significant reduction of the spatial 
antenna dimension, is described. The second method, 
applied to the array result of the first method, is amplitude 
tapering using a binomial array approach to reduce the 
sidelobes level (SLL). The simulation and measurement 
results of the sample sparse array design showed that the 
SLL was reduced in comparison to the sparse array design 
using only the combinatorial CDS method. 

1. Introduction 
Array antenna configurations are one of most useful 

antenna configurations in communication systems because 
they can provide a narrow beam width, variations in the 
beam pattern, directivity and high gain. High performance 
array antennas with very narrow beam widths and high 
directivity require large spatial apertures and a large number 
of antenna elements. These restrictions impact the antenna 
array sizing; thus, the communication system cost will be 
higher because of the many radio frequency 
(RF)/microwave components, filters and amplifiers that are 
required for each antenna element [1]. Therefore, reducing 
the number of antenna elements is a straightforward method 
to reduce the cost of a communication system. 

 In recent decades, antenna array designs have been 
developed with sparse element spacing characteristics. A 
sparse antenna array will achieve a desired radiation pattern 
with the minimum number of antenna elements, which is 
particularly useful in practical communication systems 
where the antenna weight and size are limited, such as in 
radar-phased antenna arrays, astronomy communications 
and satellite communications[1-2].  

In the literature, various techniques have been proposed 
to configure sparse array antenna designs. Generally, there 

are five sparse array antenna design methods that have been 
published; they can be classified as deterministic and 
generic algorithm methods [3-9], stochastic and 
probabilistic methods [10-12], general polynomial 
factorizations [13-15], combinatorial methods [16-18] and 
mutual coupling effects [19-21]. The combinatorial method, 
using cyclic difference sets (CDS), is a suitable design for a 
sparse array antenna with high efficiency, a simple process 
and minimal computation time compared with other sparse 
array methods.  

The primary issue of the combinatorial CDS method is 
the sidelobes level (SLL) performance. When applying the 
CDS integer to the sparse array configuration, the 
performance of the SLL is lower when compared to that of 
the full array configuration. In some applications, such as a 
radar system, the SLL performance will impact the scanning 
process and the radar measurement system. Therefore, SLL 
performance improvement is an important issue in sparse 
array antenna design. 

The classical solution to improve array performance is 
amplitude tapering to define the excitation coefficients for 
each antenna element. Some methods have been developed 
by antenna designers for the amplitude tapering technique, 
such as the binomial, Dolph-Chebyshev, Taylor and cosine 
approaches. Each method has different characteristics and 
advantages for array performance and configuration. 

In this study, we developed a combined approach using 
the combinatorial CDS method with amplitude tapering 
using a binomial array. We chose a binomial array because 
the distribution of coefficient is in staircase form, based on 
Pascal’s triangle, which matches with our new approach 
using CDS configuration element distribution. After the 
introduction in section 1, we describe the CDS integer 
approach and its application in the sparse array design in 
section 2. In section 3, we describe the hybrid technique, 
which applies amplitude tapering to the CDS configuration, 
and the proposed binomial array approach. In section 4, the 
simulation of a sample linear sparse array design to verify 
the proposed technique is presented, and the conclusion is 
presented in section 5. 

2. New Combinatorial CDS Linier Sparse Array 
Design Approach 

Difference sets are branches of the mathematical 
combinatorial theory, which are suitable for the design of a 



sparse array antenna; this reduced a significant number of 
array elements [16-17]. By definition, a (𝑉,𝐾,Ʌ) difference 
set is a set of K unique integers based on V integers from all 
populations and Ʌ is possible unique differences appears 
sequence. In sparse array design, K unique integers can be 
used as a series of array elements based on V integers of full 
array element series.  
From the set D ={𝑑0,𝑑1, … ,𝑑𝐾−1}, with 0 ≤  𝑑𝑖 ≤ (𝑉 − 1), 
such that for any integer 1 ≤  𝛼 ≤ (𝑉 − 1),  
 
where: 𝑑𝑖  –  𝑑𝑗 = 𝛼 (𝑚𝑜𝑑 𝑉), 𝑖 ≠  𝑗        (1) 
 
These three parameters (𝑉,𝐾,Ʌ ) are used to describe a 
difference set with only two independent parameters 
because there are 𝐾(𝐾 − 1)  possible difference 
(𝑑𝑖  –  𝑑𝑗) with 𝑖  not equal to  𝑗  and because each (𝑉 − 1) 
possible unique differences appears exactly Ʌ times.  
The three CDS parameters will have the following relation: 
 

𝐾 (𝐾– 1)  =  Ʌ (𝑉– 1)         (2) 
 
Example CDS parameters and integers are  
𝐷1 {1,3,4,5,9}; where 𝑉 = 11, 𝐾 = 5, Ʌ = 2 
𝐷2 {1,2,4}; where 𝑉 = 7, 𝐾 = 3, Ʌ = 1 
𝐷3 {3,6,7,12,14}; where 𝑉 = 21, 𝐾 = 5, Ʌ = 1 
𝐷4 {0,1,2,4,5,10}; where 𝑉 = 15, 𝐾 = 7, Ʌ = 3 
𝐷5 {1,4,5,6,7,9,11,16,17}; where 𝑉 = 19, 𝐾 = 9, Ʌ = 4 
 
The construction of a linear sparse array using CDS [16] is 
developed by using “one” and “zero” sequences following 
the CDS integers. From difference sets D, we may construct 
a sequence one and zero. 
 

𝐴𝑉 =  {𝑎𝑖} 𝑖 =  0,1,2, … ,𝑉 − 1       (3) 
 
where 𝑎𝑗  = 1 if j is in 𝐷 and 𝑎𝑗 =  0 if j is not in 𝐷. For 
example, 𝐷1{1,3,4,5,9} gives rise to 𝐴𝑉 = {01011100010}. 
The linear sparse array configuration can be constructed by 
starting with an empty lattice of element locations spaced 
λ/2 apart, placing an element at each location where a 
sequence has a ”1” and skipping each location where the 
sequence has a ”0” [16]. This approach can reduce the array 
by a significant number of elements from a full array 
configuration or minimize the array to approximately half 
of the number of elements (𝐾/𝑉).  

The challenge when using the CDS approach for sparse 
array design is reducing the high SLL as compared to a full 
array configuration [22]. In antenna array design, amplitude 
tapering is a classical solution to improve SLL performance 
by controlling amplitude excitation for each array element. 
The basic idea in amplitude tapering is the application of a 
normal distribution or a Gaussian distribution model to the 
power distribution. Following this principle, a new strategy 
for combinatorial CDS application to linear sparse array 
design is developed. 

The new strategy for applying a CDS integer in the 
sparse array configuration is applied following the 
characteristic of the amplitude tapering distribution 

function, which is the primary contribution of the radiation 
pattern emanating from the center of the array distribution 
(Gaussian distribution model). Using this approach, the new 
design procedure is as follows: 

1. Split the full array configuration into two sides 
from the center of the array. 

2. Define the array configuration as a representative 
of the 𝑉 integer series for each side. 

3. Apply the CDS 𝐾  integer series for the sparse 
array configuration on each side. 

4. Reduce the spatial antenna dimension for each side 
of the array configuration. 

 
For example, a 32-element linear array microstrip 

antenna with inter-element spacing of λ/2 is reduced to a 
16-element linear sparse array using our combinatorial CDS 
method. We choose a CDS (15,7,3) for each side of the 
array configuration (16 elements per side). The sparse array 
element configuration following a CDS 𝐾 -integer series 
places the element in the configuration of a 𝐷 set integer 
(0 1 2 4 5 8 10) element position, with one element in the 
center of the array for each side. The array configuration is 
shown in Fig. 1. 
 

 
a. 32-element full-array antenna (d=0.5λ) 

 

 
b. Reduced number of elements 

 

 
c. Reduced spatial antenna dimension  

 
Figure 1: Design procedure of new CDS approach 

 

3. Hybrid Technique Applying Binomial 
Amplitude Tapering 

The proposed new configuration combinatorial CDS 
method for designing a linear sparse array antenna in the 
previous section is an effective method to reduce a 
significant number of elements, but this method still has the 
challenging issue of poor SLL performance. In the 
combinatorial CDS method, SLL performance was 
described using a relation between 𝐾  and 𝑉  [16, 22] as 
follows: 
 
 PSL =  10 log �1

𝐾
�1 −  𝐾

𝑉
�� 

             + 10 𝑙𝑜𝑔 [0.8488 +  1.128 𝑙𝑜𝑔 𝑉]𝑑𝐵  (4) 
 
Where PSL is peak SLL. The approximation is valid for 
𝑉 > 50 and 𝐾 < 𝑉/2 [16, 23]. 

Using the approach in (4), the SLL performance in a 
combinatorial CDS is poor. In some applications, such as 
radar systems and satellite communication, the SLL 
performance is important for an accurate scanning result. To 
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improve the SLL performance, an amplitude tapering 
solution is proposed. The procedure follows the new strategy 
combinatorial CDS configuration as described in section 2 
and controls the excitation of each element by amplitude 
tapering. 

Amplitude tapering is a type of non-uniform amplitude 
excitation for array elements. The most practical approaches 
and methods to determine amplitude tapering include a 
binomial array, a Dolph-Chebyshev array and a Taylor array. 
Each approach has advantages and disadvantages, depending 
on the desired design target and antenna array application 
requirement. Usually, a compromise must be made between 
the primary array antenna parameter, the half-power beam 
width (3-dB beam width), the directivity and a low SLL. As 
the SLL decreases, the half-power bandwidth decreases and 
typically, the directivity increases [24- 25].  

To apply amplitude tapering to the new strategy CDS 
configuration, the binomial array can be applied directly, i.e., 
without a different excitation coefficient, unlike the Dolph-
Chebyshev and Taylor distribution models. The coefficient 
amplitude tapering methods for the Dolph-Chebyshev array 
and the Taylor array are similar. The coefficient tapering is 
distributed to all elements, with slight differences among 
them. The application significantly impacts array 
performance, especially after reducing the number of 
elements in the array distribution using CDS integers. The 
result is different when binomial array distribution, which 
follows Pascal’s triangle, is applied; most of the distribution 
is in the center of the array. This model is similar to the 
proposed configuration of the CDS element position, which 
focuses on placing the array element in the center of the array. 
The coefficients for the edge distributions on both sides are 
small, especially for a large number of array elements, and 
can be neglected without any significant impact to array 
performance. 

The binomial array was investigated and proposed by J.S 
Stone [24] to synthesize a pattern without sidelobes. 
Consider an array factor from two elements as follows: 

 
𝐴𝐹 =  1 +  𝑒 𝑗𝜓                                 (5)
  

Where  𝜓 =  𝑘 𝑑 𝑐𝑜𝑠 𝜃     

For a broadside array (β = 0) when inter-element spacing 
is less than half of a wavelength, the array factor has no 
sidelobes [24]. Continuing for three elements, the array 
factor produces the following:   

 3 Elements 𝐴𝐹 = �1 + 𝑒 𝑗𝜓��1 + 𝑒 𝑗𝜓� 
             =  (1 + 𝑒 𝑗𝜓)2  
             =  1 + 2 𝑒 𝑗𝜓  +  𝑒 𝑗𝜓      (6) 
 

This representation is the square of a two-element array 
factor without a sidelobe product and will also not have 
sidelobes. A similar approach is applied for four elements up 
to N elements as follows: 

 
 4 elements  𝐴𝐹 = �1 + 𝑒 𝑗𝜓�2  

                    = 1 + 3𝑒 𝑗𝜓 + 3𝑒 𝑗𝜓 + 𝑒 𝑗𝜓       (7) 

and for 𝑁  elements, the array factor will become (1 +
𝑒 𝑗𝜓)𝑁−1 and 

N elements 𝐴𝐹 = (1 +  𝑒 𝑗𝜓)𝑁−1       (8) 
 

Mathematically, the array factor shown in (8) represents a 
distribution of amplitude excitation for each element. Three 
elements have a ratio of 1:2:1 amplitude excitation and four 
elements have a ratio of 1:3:3:1. The excitation amplitude 
distribution can be easily obtained by expansion of the 
binomial in (8). Using Pascal’s triangle, the distribution is as 
follows: 

 
N = 1    1 
N = 2            1       1 
N = 3       1       2         1 
N = 4   1       3        3        1 
N = 5          1        4       6         4        1 
N = 6     1         5      10      10       5        1 
N = 7             1       6        15     20       15       6        1 
N = 8         1      7        21      35      35      21       7       1 
N = 9     1      8      28       56      70      56     28        8      1 
 

Based on the expansion of Pascal’s triangle above, the 
coefficient for the edge distribution of both sides is small 
compared to the coefficient in the center distribution. This 
also occurs in the sparse array configuration based on the 
new CDS approach in which the eliminated element is 
placed on the edges of both sides. The new proposed CDS 
approach with binomial array amplitude tapering is therefore 
a hybrid technique linear sparse array antenna.     
    

4. Simulated and Measured Result 
To validate the proposed hybrid technique, as an example, 

a linear sparse array design for a 16-element linear full array 
is reduced to an 8-element linear sparse array using the 
procedure described in the previous section. In the 
simulation, a linear microstrip array antenna is used. It is 
designed at a frequency of 5 GHz and uses a substrate 
material of Taconic TLY-5 (εr = 2.2) with a thickness = 1.58 
in. Using Computer Simulation Technology (CST) 
microwave studio 2014 (https://www.cst.com) software 
simulation, we start by developing the 16-element full-array 
configuration as shown in Fig. 2. This configuration is the 
basis and parameter comparison for designing the linear 
sparse array antenna. The simulation and measurement 
results of s-parameter and radiation performance are shown 
in Fig. 3. 
 

 
Figure 2: 16-element full-array antenna (d=0.5λ) 
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  Simulation                Measurement 

a. S11  
 
 

 
       Simulation            Measurement 

b. 2D radiation pattern plot 
 

Figure 3: Radiation performances of 16-element full-array 
antenna (d=0.5λ) 
 

The design result of the 16-element full-array antenna 
was a gain of 18.8 dB with a half-power beam width of 4.5° 
and an SLL of -13.6 dB. The next step in designing a linear 
sparse array is splitting the configuration into two sides of 
eight elements each. CDS (7, 3, 1) is then applied to this split 
configuration as shown in Fig. 4a. 

 
 

 
a. Reduced number of elements with CDS (7, 3, 1) 

 
 

 
b. Reduced spatial antenna dimension 

 
Figure 4: Design process of 8-element sparse array 

 
In the next step of the sparse array design, the spatial 

dimension is reduced by decreasing the antenna length 

(substrate) at the edges of both sides, resulting in the final 
configuration as shown in Fig. 4b. The simulation and 
measurement results of the s-parameter and the radiation 
performance are shown in Fig. 5. 

 
 

 
  Simulation               Measurement 

a. S11 
 
 

 
   Simulation               Measurement 

b. 2D radiation pattern plot 
 
Figure 5: Radiation performances of 8-element sparse array 
by applying CDS (7, 3, 1) 

 
The simulation and measurement results show that the 

SLL of the radiation pattern linear sparse array using the 
CDS method is higher than that of the full-array 
configuration, as shown in Fig. 5. The SLL simulation is -
12.0 dB with a 3 dB beam width of 7.8° and a gain of 16.1 
dB. 

The last step of the design process is to apply the 
amplitude tapering using a binomial array. For N = 16, the 
expansion of Pascal’s triangle is 1, 15, 106, 462, 1386, 3038, 
5014, 6463, 6463, 5014, 3038, 1386, 462,106, 15, 1. The 
amplitude tapering coefficient for each element is shown in 
Table 1. 

The coefficients and relative amplitude for each element 
listed in Table 1 is applied to the eight elements remaining 
after reduction by the CDS sparse configuration, i.e., element 
numbers 4, 6, 7, 8, 9, 10, 11 and 13. 
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Table 1: Amplitude Tapering Coefficients. 

Element 
Number Coefficient 

Amplitude 
Attenuate 

(dB) 
1 0.0001 -40.00 
2 0.0020 -26.99 
3 0.0200 -16.99 
4 0.0700 -11.55 
5 0.2100 -6.78 
6 0.4700 -3.28 
7 0.7800 -1.08 
8 1.0000 0.00 
9 1.0000 0.00 
10 0.7800 -1.08 
11 0.4700 -3.28 
12 0.2100 -6.78 
13 0.0700 -11.55 
14 0.0200 -16.99 
15 0.0020 -26.99 
16 0.0001 -40.00 

 

 
 
 

 
   Simulation               Measurement 

a. S11 
 

 
    Simulation              Measurement 

b. 2D radiation pattern 
 
Figure 6: Radiation performances of 8-element hybrid 
technique sparse array antenna.  
 

The simulation and measurement results of the proposed 
hybrid technique are shown in Fig. 6. The SLL simulation is 
-22.7 dB, a significant improvement over that of the 
combinatorial CDS linear sparse array. The implication of 
amplitude tapering is reduced directivity and a wider beam 
width, which are the compromises when the SLL is a 
priority in the antenna design requirements. The overall 
performance comparison is shown in Table 2. 
 

Table 2: Performance Comparison of the hybrid 
technique for a 16-Element Array 

No Array 
Configuration 

Elements 
& 

Aperture 
Length 

Radiation 
Performances 

Gain 
(dB) 

3dB 
Beam 
width 

(°) 

SLL 
(dB) 

1 Full Array 16 
(16.83λ) 18.8 4.5 -13.6 

      

2 CDS Sparse 
Array 

8 
(10.78λ) 16.1   7.8  -12.0 

      

3 
Hybrid 
Technique 
Sparse Array 

8 
(10.78λ) 14.5 13.1 -22.7 

    
 

 
Using the same design procedure, the proposed hybrid 

technique is applied to the design of a 32- and a 64-element 
full array antenna to a sparse array configuration. The 
performance results are shown in Tables 3 and 4. 

 
Table 3: Performance Comparison of the hybrid 
technique for a 32-Element Array 

No Array 
Configuration 

Elements 
& 

Aperture 
Length 

Radiation 
Performances 

Gain 
(dB) 

3dB 
Beam 
width 

(°) 

SLL 
(dB) 

1 Full Array 32 
(32.94λ) 21.8 2.2 -13.6 

      

2 CDS Sparse 
Array 

16 
(24.89λ) 19.2   3.2  -11.9 

      

3 
Hybrid 
Technique 
Sparse Array 

16 
(24.89λ) 16.1 8.8 -22.1 

    
 

 
The overall performance comparison for larger number 

of elements is shown in Table 4. It is observed that the 
proposed hybrid technique has better efficiency for larger 
number of array (massively array) with significantly reduced 
number of array element and spatial antenna dimension. 
Furthermore, the simulation computation time speed 
proposed hybrid technique has better than CDS method and 
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full array configuration. Using CST software simulation for 
16-element array, the proposed technique has 424,116 mesh 
cells compared to 532,980 mesh cells for CDS method and 
741,636 mesh cells for full array configuration. It is shown 
significant reduced computation time speed for time domain 
solver. 
 

Table 4: Performance Comparison of the hybrid 
technique for a 64-Element Array 

No Array 
Configuration 

Elements 
& 

Aperture 
Length 

Radiation 
Performances 

Gain 
(dB) 

3dB 
Beam 
width 

(°) 

SLL 
(dB) 

1 Full Array  64 
(65.17λ) 24.8 0.6 -23.2 

      

2 CDS Sparse 
Array 

32 
(63.16λ) 22.3   0.72  -10.9 

      

3 
Hybrid 
Technique 
Sparse Array 

16 
(26.9λ) 17.3 6.6 -21.1 

    
 

 

5. Conclusions 
A new hybrid technique for the design of a linear sparse 

array antenna is described. The proposed method combines 
a new CDS approach with an amplitude tapering binomial 
array. The proposed new CDS configuration is a reduced 
spatial dimension array antenna that yields a significant 
reduction in the number of elements. The proposed hybrid 
technique for sparse array antenna design shows an 
improved SLL compared to both a combinatorial CDS 
linear sparse array antenna and a uniform amplitude full-
array configuration. The hybrid design has a significantly 
reduced number of elements, antenna dimensions and 
computation time speed. 
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