Sensitivity analysis to compute advanced stochastic problems in uncertain and complex electromagnetic environments

Main Article Content

S. Lalléchère
B. Jannet
P. Bonnet
F. Paladian

Abstract

This paper deals with the advanced integration of uncertainties in electromagnetic interferences (EMI) and electromagnetic compatibility (EMC) problems.   In this context,  the Monte Carlo formalism may provide a reliable reference to proceed to statistical assessments.   After all, other  less  expensive  and  efficient  techniques  have  been implemented more recently (the unscented transform and stochastic collocation methods for instance) and will be illustrated through uncertain EMC problems. Finally, we will present how the use of sensitivity analysis techniques may offer an efficient complement to rough statistical or stochastic studies.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lalléchère, S., Jannet, B., Bonnet, P., & Paladian, F. (2012). Sensitivity analysis to compute advanced stochastic problems in uncertain and complex electromagnetic environments. Advanced Electromagnetics, 1(3), 13-23. https://doi.org/10.7716/aem.v1i3.43
Section
Research Articles

References


  1. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes, Cambridge University Press, 2nd edition, 1992.

  2. N. Mishra, N. Gupta, Quasi Monte Carlo Integration Technique for Method of Moments Solution of EFIE in Radiation Problems, ACES Journal, vol. 24, no. 3, pp. 306–311, June 2009.

  3. L. de Menezes, D. Thomas, C. Christopoulos, Accounting for uncertainty in EMC studies, Proc. 2009 Int. Symp. on EMC, Kyoto, Japan, 2009.

  4. L. de Menezes, D. Thomas, C. Christopoulos, A. Ajayi, P. Sewell, The use of unscented transforms for statistical analysis in EM, Proc. EMC Europe 2008, Hamburg, Germany, 2008.

  5. L. de Menezes, A. Ajayi, C. Christopoulos, P. Sewell, G. A. Borges, Efficient computation of stochastic electromagnetic problems using unscented transforms, IET Sci. Meas. Technol., vol. 2(2), pp. 88–95, 2008.
    View Article

  6. C. Chauviere, J. S. Hestaven, L. C. Wilcox, Efficient Computation of RCS from Scatterers of Uncertain Shapes, IEEE Trans. On Ant. And Prop., vol. 55, no. 5, pp. 1437-1448,May 2007.
    View Article

  7. P. Bonnet, F. Diouf, C. Chauviere, S. Lallechere, M. Fogli, F. Paladian, Numerical simulation of a Reverberation Chamber with a stochastic collocation method, Compte Rendu de l'Academie des Sciences, Physique, vol. 10, pp. 54-64, 2009.
    View Article

  8. P. Bonnet, C. Chauviere, S. Lallechere, F. Paladian, B. Pecqueux, Recherche de configurations critiques pour un probleme de C.E.M. stochastique, Proc. 15th Int. Symp. on EMC, Limoges, France, April 2010.

  9. F. Paladian, P. Bonnet, S. Lallechere, Modeling complex systems for EMC applications by considering uncertainties, Proc. XXXth URSI GA 2011, Istambul, Turkey, August 2011.

  10. F. Diouf, F. Canavero, Crosstalk statistics via collocation method, Proc. IEEE Int. Symp. on Electromagnetic Compatibility, Austin TX, USA, Aug. 2009.

  11. V. Rannou, F. Brouaye, M. Helier, W. Tabbara, Kriging the quantile: application to a simple transmission line model, Inst. of Ph. Publish., Inverse problems 18, pp. 37-48, PII: S0266-5611(02)20767-4.

  12. A. El Habachi, Propagation de la variabilite de la morphologie humaine sur le Debit d'Absorption Specifique en dosimetrie numerique, PhD Thesis Supelec, Paris, France, 2011.

  13. H. Bagci, A. C. Yucel, J. S. Hesthaven, E. Michielssen, A fast stroud-based collocation method for statistically characterizing EMI/EMC phenomena on complex platforms, IEEE Trans. on EMC, vol. 51, no. 2, pp. 301-311, 2009.

  14. P. S. Sumant, H. Wu, A. C. Cangellaris, N. R. Aluru, A sparse grid based collocation method for model order reduction of finite element approximations of passive electromagnetic devices under uncertainty, Proc. 2010 IEEE MTT-S International, Anaheim, CA, USA, pp. 1652-1655, May 2010.

  15. I. Tarhini, C. Guiffaut, A. Reineix, S. Karam, B. Pecqueux, J.C. Joly, Etude parametrique de la susceptibilite des cartes electroniques par les plans d'experiences numeriques, Proc. Int. Symp. On EMC, Paris, France, May 2008.

  16. M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, Vol. 33, No. 2, pp. 161–174, 1991.
    View Article

  17. A. Saltelli, M. Ratto, S. Tarantola, F. Campolongo, Sensitivity analysis practices. Strategies for modelbased inference, Reliability Engineering and System Safety, vol. 91, pp. 1109-1125, 2006.
    View Article

  18. B. Looss, Revue sur l'analyse de sensibilite globale de modeles numeriques, Journal de la Societe Francaise de Statistiques, vol. 152, no. 1, pp. 3–25, 2011.

  19. F. Campolongo, J. Cariboni, A. Saltelli, V. Schoutens, Enhancing the Morris method, Sensitivity Analysis of Model Output, Los Alamos National Laboratory, 2005.

  20. D. Xiu, J. S. Hesthaven, High order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., Vol. 27, No. 3, pp. 1118–1139, 2005.
    View Article

  21. A. H. Stroud, Remarks on the disposition of points in numerical integration formulas, Math. Tables Other Aids Comput., vol. 11, no. 3, pp. 1118–1139, Oct. 1957.

  22. D. W. P. Thomas, J. Paul, C. Christopoulos, Statistical variation of coupling within a circuit cabinet, Proc. ESA workshop on aerospace EMC, Venice, Italy, May 2012.

  23. S. Lallechere, S. Girard, P. Bonnet, F. Paladian, Enforcing experimentally stochastic techniques in uncertain electromagnetic environments, Proc. ESA workshop on aerospace EMC, Venice, Italy, May 2012.