Trapping of light with angular orbital momentum above the light cone

Main Article Content

E. Bulgakov
A. Sadreev

Abstract

We consider bound states in the radiation continuum (BSC) above the light cone in an one-dimensional periodic array of dielectric spheres in air. The BSCs are classified by orbital angular momentum m, Bloch wave vector β directed along the array, and polarization. The most simple symmetry protected BSCs have m = 0, β = 0 and occur in a wide range of the radius of spheres and dielectric constant. More sophisticated BSCs with m ̸= 0, β = 0 exist only for a selected radius of the spheres at a fixed dielectric constant. We also show the existence of robust Bloch BSCs with β ̸=0, m = 0. The BSCs with m = 0 can be easily detected by the collapse of Fano resonance in scattering of a plane wave. In response to a plane wave with circular polarization the BSCs with m ̸= 0 give rise to Poynting vector spiralling around the array.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bulgakov, E., & Sadreev, A. (2017). Trapping of light with angular orbital momentum above the light cone. Advanced Electromagnetics, 6(1), 1-10. https://doi.org/10.7716/aem.v6i1.423
Section
Research Articles

References


  1. A. Quirantes, F. Arroyo, and J. Quirantes-Ros, "Multiple Light Scattering by Spherical Particle Systems and Its Dependence on Concentration: A T-Matrix Study," J. Colloid and Interface Sc., vol. 240, pp. 78-82, 2001.
    View Article

  2. Pi-Gang Luan, Kao-Der Chang, "Transmission characteristics of finite periodic dielectric waveguides,"  Opt. Express, vol.14, No. 8, pp. 3263-3272, 2006.
    View Article

  3. R. Zhao,  T. Zhai,  Z. Wang, and  D. Liu, "Guided Resonances in Periodic Dielectric Waveguides," J. Lightwave Tech., vol. 27, No. 20, pp. 4544-4547, 2009.
    View Article

  4. J. Du, S. Liu, Z. Lin, J. Zi, and S.T. Chui, "Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays," Phys. Rev. A, vol. 79, nO. 5, p. 051801R, 2009.
    View Article

  5. A.L. Burin, H. Cao, G.C. Schatz and M.A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. A., vol. 21, No. 1, pp. 121-131, 2004.

  6. M. Gozman, I. Polishchuk, and A. Burin, "Light propagation in linear arrays of spherical particles," Phys. Lett. A, vol. 372, No. 31, pp. 5250-5253, 2008.
    View Article

  7. G.S. Blaustein, M.I. Gozman, O. Samoylova, I.Ya. Polishchuk, A.L. Burin, "Guiding optical modes in chains of dielectric particles," Opt. Express, vol. 15, No. 25, pp. 17380-17391, 2007.

  8. B.T. Draine and P.J. Flatau, "Discrete-dipole approximation for periodic targets: theory and tests," J. Opt. Soc. Am. A, vol. 25, No. 11, pp. 2693-2703, 2008.

  9. R.S. Savelev, A.P. Slobozhanyuk, A.E. Miroshnichenko, Yu.S. Kivshar, and P.A. Belov, "Subwavelength waveguides composed of dielectric nanoparticles," Phys. Rev. B, vol. 89, No. 3, p. 035435, 2014.
    View Article

  10. R. S. Savelev, S. V. Makarov, A. E. Krasnok, and P. A. Belov, "From Optical Magnetic resonance to dielectric nanophotonics," Optics and Spectroscopy, vol. 119, No. 4, pp. 551-568, 2015.
    View Article

  11. C.M. Linton, V. Zalipaev, and I. Thompson, "Electromagnetic guided waves on linear arrays of spheres,"  Wave Motion, vol.50, No. 1, pp. 29-40, 2013.

  12. S.P. Shipman and S. Venakides, "Resonant transmission near nonrobust periodic slab modes," Phys. Rev. E, vol. 71, No. 2, p. 026611, 2005.

  13. D.C. Marinica, A. G. Borisov, and S.V. Shabanov, "Bound States in the Continuum in Photonics," Phys. Rev. Lett., vol. 100, No. 18, p. 183902, 2008.
    View Article

  14. R.F. Ndangali and S.V. Shabanov, "Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders," J. Math. Phys., vol. 51, No. 10, p. 102901, 2010.
    View Article

  15. E.N. Bulgakov and A.F. Sadreev, "Bloch bound states in the radiation continuum in a periodic array of dielectric rods, Phys. Rev. A, vol. 90, No. 5, p. 053801, 2014.
    View Article

  16. M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo,  Z. Zhang, and X. Luo, "Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity," Opt. Express, vol. 23, No. 3, pp. 2895-2903, 2015.

  17. Zhen Hu and Ya Yan Lu, "Standing waves on two-dimensional periodic dielectric waveguides," J. Optics, vol. 17, No. 6,  p. 065601, 2015.

  18. Lijun Yuan and Ya Yan Lu, "Diffraction of plane waves by a periodic array of nonlinear circular cylinders," Phys. Rev. A, vol. 94, No. 13, p. 013852 (2016).
    View Article

  19. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J.D. Joannopoulos, M. Soljacic, and O. Shapira, "Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,"  Phys. Rev. Lett., vol. 109, No. 6, p. 067401, 2012.

  20. C.W. Hsu, B. Zhen , Song-Liang Chua , S.G. Johnson, J.D. Joannopoulos, and M. M. Soljacic, "Bloch surface eigen states with in the radiation continuum,  Light: Science and Applications, vol. 2, pp. 1-5, 2013.
    View Article

  21. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, "Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs," Phys. Rev. Lett. vol. 113, No. 3, p. 037401, 2014.
    View Article

  22. Bo Zhen, Chia Wei Hsu, Ling Lu,  A.D. Stone, and M. Soljacic, "Topological Nature of Optical Bound States in the Continuum,"  Phys. Rev. Lett., vol. 113, No. 25, 257401, 2014.
    View Article

  23. M. Zhang and X. Zhang, "Ultrasensitive optical absorption in graphene based on bound states in the continuum,"  Scientific Rep., vol. 5:8266, pp.  1-6, 2015.
    View Article

  24. J. von Neumann and E. Wigner, "Uber  merkwudige  diskrete  eigenwerte,"  Z. Physik, vol. 50, pp. 291-293, 1929.

  25. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, "Experimental observation of optical bound states in the continuum," Phys. Rev. Lett., vol. 107, No. 18, p. 183901, 2011.
    View Article

  26. M. Lopez-Garcia, J.F. Galisteo-Lopez, C. Lopez, and A. Garcia-Martin, "Light confinement by two-dimensional arrays of dielectric spheres," Phys. Rev. B, vol. 85, No. 23, p. 235145, 2012.

  27. G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, and S. Longhi, "Observation of surface states with algebraic localization," Phys. Rev. Lett., vol. 111, No. 22,  p. 220403, 2013.
    View Article

  28. S. Weimann, Yi Xu, R. Keil, A.E. Miroshnichenko, A. Tunnermann, S. Nolte, A.A. Sukhorukov, A. Szameit, and Yu.S. Kivshar, "Compact surface fano states embedded in the continuum of waveguide arrays, Phys. Rev. Lett., vol. 111, No. 24, p. 240403, 2013.
    View Article

  29. Chia Wei Hsu, Bo Zhen, A.D. Stone,  J.D. Joannopoulos,  and M. Soljavcic, "Bound states in the continuum," Nature Rev. Mater.,  Advance Online Publication 1, p. 16048, (2016).
    View Article

  30. J. A. Stratton, Electromagnetic Theory,  McGraw-Hill, New York, 1941.

  31. E.N. Bulgakov and A.F. Sadreev, "Light trapping above the light cone in one-dimensional array of dielectric spheres,"  Phys. Rev. A, vol. 92, No. 2, p. 023816, 2015.
    View Article

  32. J.H. Bruning and Y.T. Lo, "Multiple scattering of EM waves by spheres Part I - multipole expansion and ray-optical solutions," IEEE Trans. Antennas and Propagation, vol. AP-19, No. 3, pp. 378-390, 1971.

  33. R. Porter and D.V.Evans, "Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays," Wave Motion, vol. 43, pp. 29-50, 2005.

  34. K. Ohtaka, "Scattering theory of low-energy photon diffraction," J. Phys. C: Solis State  Phys., vol. 13, pp. 667-680, 1980.

  35. K.A. Fuller and G.W. Kattawar, "Consummate solution to the problem  of classical electromagnetic scattering by an ensemble of spheres. I: Linear chains," Opt. Lett., vol. 13, pp. 90-92, 1988.

  36. Yu-lin Xu, "Electromagnetic scattering by an aggregate of spheres,"  Appl. Optics, vol. 34, No. 21, pp. 4573-4588, 1995.

  37. A.-S. Bonnet-Bendhia and F. Starling, ”Guided waves by electromagnetic gratings and non uniqueness examples for the diffraction problem,” Math. Methods Appl. Sci. 17, 305 (1994).

  38. A.F. Sadreev, E.N. Bulgakov, and I. Rotter, "Bound states in the continuum in open quantum billiards with a variable shape," Phys. Rev. B, vol. 73, No. 23, p. 235342, 2006.
    View Article

  39. E. N. Bulgakov , K. N. Pichugin , A. F. Sadreev , and I. Rotter, "Bound States in the Continuum in Open Aharonov–Bohm Rings,"  JETP Lett., vol. 84, No. 8, pp. 430-435, 2006.
    View Article

  40. N. Bulgakov, I. Rotter,1 and A. F. Sadreev, ”Comment on Bound-state eigenenergy outside and inside the continuum for unstable multilevel systems, Phys. Rev. A 75, 067401 (2007).

  41. J.D. Jackson, Classical Electrodynamics, N.Y., 1962.

  42. Li Jun Yuan and Ya Yan Lu, ”Propagating Bloch modes above the lightline on a periodic array of cylinders”, J. Opt. Soc. Am. (2016).

  43. E.N. Bulgakov and D.N. Maksimov, ”Light guiding above the light line in arrays of dielectric nanospheres”, Opt. Lett. 41, 3888 (2016).

  44. A. F. Sadreev and I. Rotter, "S-matrix theory for transmission through billiards in  tight-binding  approach,"  J.  Phys.  A:  Math.  Gen., vol. 36, pp. 11413-11433, 2003.

  45. L. Allen,  M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, vol. 45, No. 11,  8185-8189, 1992.

  46. L. Allen, M.J. Padgett, "The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density," Opt. Comm., vol. 184, pp. 67-71, 2000.

  47. A.M. Yao  and M.J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photon. vol. 3, pp. 161-204, 2011.
    View Article

  48. M. Berezin, E. O. Kamenetskii, and R. Shavit, "Magnetoelectric-field microwave antennas: Far-field orbital angular momenta from chiral-topology near fields," arXiv preprint: 1512.01393, 2015.

  49. Yu. Gorodetski, A. Drezet, C. Genet, and T.W. Ebbesen, "Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality,"  Phys. Rev. Lett., vol. 110, No. 20, p. 203906, 2013.

  50. N. Yu, F. Capasso, "Optics with designer metasurfaces,"  Nature Mat. vol. 13, pp. 139-150, 2014.
    View Article

  51. E. N. Bulgakov  and A. F. Sadreev, "Giant optical vortex in photonic crystal waveguide with nonlinear optical cavity," Phys. Rev. B, vol. 85, No. 16, 165305, 2012.
    View Article

  52. A. I. Fernandez-Dominguez, S.A. Maier, and J. B. Pendry, "Collection and Concentration of Light by Touching Spheres: A Transformation Optics Approach," Phys. Rev. Lett., vol. 105, No. 26, p. 266807, 2010.