Emergence of Classicality from Initial Quantum World for Dissipative Optical Waves

Main Article Content

J. R. Choi

Abstract

For light waves propagating in dissipative media, the emergence of classical characteristics from the initial quantum world is investigated. Two classicality measures of the system, which are the measure of the degree of (relative) classical correlation and that of the degree of quantum decoherence are analyzed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Choi, J. R. (2016). Emergence of Classicality from Initial Quantum World for Dissipative Optical Waves. Advanced Electromagnetics, 5(3), 25-31. https://doi.org/10.7716/aem.v5i3.393
Section
Research Articles

References


  1. R. Blume-Kohout,W.H. Zurek, Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information, Phys. Rev. A 73: 062310, 2006.
    View Article

  2. S. Lyagushyn, A. Sokolovsky, Description of field states with correlation functions and measurements in quantum optics, in Quantum Optics and Laser Experiments (ed Lyagushyn, S.), Intech, Rijeka, Ch. 1, pp. 3–24, 2012.
    View Article

  3. J. R. Choi, Coherent and squeezed states for light in homogeneous conducting linear media by an invariant operator method, Int. J. Theor. Phys. 43: 2113–2136, 2004.
    View Article

  4. J. R. Choi, Nonclassical properties of superpositions of coherent and squeezed states for electromagnetic fields in time-varying media, in Quantum Optics and Laser Experiments (ed Lyagushyn, S.), Intech, Rijeka, Ch. 2, pp. 25–48, 2012.

  5. X.-M. Bei, Z.-Z. Liu, Quantum radiation in timedependent dielectric media, J. Phys. B: At. Mol. Opt. Phys. 44: 205501, 2011.
    View Article

  6. M. Servin, G. Brodin, Propagation of electromagnetically generated wake fields in inhomogeneous magnetized plasmas, J. Plasma Phys. 67: 339–351, 2002.
    View Article

  7. A.V. Bosisio, Field estimation through ray-tracing for microwave links. in Electromagnetic Waves Propagation in Complex Matter (ed Kishk, A.) Ch. 7, 187–206 (Intech, Rijeka, 2011).

  8. J. R. Choi, The decay properties of a single-photon in linear media, Chin. J. Phys. 41: 257–266, 2003.

  9. A. L. de Lima, A. Rosas, I.A. Pedrosa, On the quantization of the electromagnetic field in conducting media, J. Mod. Opt. 56: 41–47, 2009.
    View Article

  10. M. Morikawa, Quantum decoherence and classical correlation in quantum mechanics, Phys. Rev. D 42: 2929–2932, 1990.
    View Article

  11. J. R. Choi, Approach to the quantum evolution for underdamped, critically damped, and overdamped driven harmonic oscillators using unitary transformation, Rep. Math. Phys. 52: 321–329, 2003.
    View Article

  12. H. R. Lewis Jr., Classical and quantum systems with time-dependent harmonic-oscillator-type Hamiltonians, Phys. Rev. Lett. 18: 510–512, 1967.
    View Article

  13. H. R. Lewis Jr., W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys. 10: 1458–1473, 1969.
    View Article

  14. M. Genovese, Interpretations of quantum mechanics and measurement problem, Adv. Sci. Lett. 3: 249–258, 2010.
    View Article

  15. T. Gornitz, Quantum theory as universal theory of structures essentially from cosmos to consciousness. in Advances in Quantum Theory (ed Cotaescu, I.), Intech, Rijeka, Ch. 1, pp. 3–22, 2012.
    View Article

  16. J. J. Halliwell, Decoherence in quantum cosmology, Phys. Rev. D 39: 2912–2923, 1989.
    View Article

  17. M. Genkin, E. Waltersson, E. Lindroth, Estimation of the spatial decoherence time in circular quantum dots, Phys. Rev. B 79: 245310, 2009.
    View Article

  18. M. Genkin, E. Lindroth, Environmental effects on the phase space dynamics and decoherence time scale of a charged particle in a Penning trap, J. Phys. A: Math. Theor. 42: 385302, 2009.
    View Article

  19. J. R. Choi, S. Zhang, Thermodynamics of the standard quantum harmonic oscillator of time-dependent frequency with and without inverse quadratic potential, J. Phys. A: Math. Gen. 35: 2845–2855, 2002.
    View Article

  20. S. Machida, M. Namiki, Theory of measurement of quantum mechanics: mechanism of reduction of wave packet, Prog. Theor. Phys. 63: 1457–1473, 1980.
    View Article

  21. R. Fukuda, Implications of the proposed theory of measurement, Prog. Theor. Phys. 81: 34–36, 1989.
    View Article

  22. W. H. Zurek, Environment-induced superselection rules, Phys. Rev. D 26: 1862–1880, 1982.
    View Article

  23. H. Kubotani, T. Uesugi, M. Morikawa, and A. Sugamoto, Classicalization of quantum fluctuation in inflationary universe, Prog. Theor. Phys. 98: 1063– 1079, 1997.
    View Article

  24. J. R. Choi and S. Zhang, Quantum and classical correspondence of damped-amplified oscillators, Phys. Scr. 66: 337–341, 2002.
    View Article

  25. V. Ryzhii, M. Ryzhii, M.S. Shur, V. Mitin, Negative terahertz dynamic conductivity in electrically induced lateral p-i-n junction in graphene, Physica E 42: 719– 721, 2010.
    View Article

  26. V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, T. Otsuji, Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion, Japanese J. Appl. Phys. 50: 094001, 2011.
    View Article

  27. D.K. Kalluri, Electromagnetics of Time Varying Complex Media, 2nd edn, CRC Press, Boca Raton, 2010.
    View Article

  28. J. H. Lee, D.K. Kalluri, Modification of an electromagnetic wave by a time-varying switched magnetoplasma medium: transverse propagation, IEEE Trans. Plasma Sci. 26: 1–6, 1998.
    View Article