Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept

Main Article Content

M. Y. Barabanenkov
Y. N. Barabanenkov
S. A. Nikitov

Abstract

If a scatterer and an observation point (receive) both approach the so-called near field zone of a source of electromagnetic waves, the scattering process becomes singular one which is mathematically attributed to the spatial singularity of the free space Green function at the origin. Starting from less well known property of left-handed material slab to transfer the singularity of the free space Green function by implementing coordinate transformation, we present a phenomenon of virtual singular scattering of electromagnetic wave on an inhomogeneity located in the volume of left – handed material slab. Virtual singular scattering means that a scatterer is situated only virtually in the near field zone of a source, being, in fact, positioned in the far field zone. Such a situation is realized if a scatterer is embedded into a flat Veselago’s lens and approaches the lens’s inner focus because a slab of Veselago medium produces virtual sources inside and behind the slab and virtual scatterer (as a source of secondary waves) from both slab sides. Considering a line-like dielectric scatterer we demonstrate that the scattering efficiency is proportional to product of singular quasistatic parts of two empty space Green functions that means a multiplicative quasistatic singularity of the Green function for a slab of inhomogeneous Veselago medium. We calculate a resonance value of the scattering amplitude in the regime similar to the known Mie resonance scattering.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barabanenkov, M., Barabanenkov, Y., & Nikitov, S. (2012). Virtual Singular Scattering of Electromagnetic Waves in Transformation Media Concept. Advanced Electromagnetics, 1(1), 38-45. https://doi.org/10.7716/aem.v1i1.34
Section
Research Articles
Author Biographies

M. Y. Barabanenkov, Institute of Microelectronics Technology (IMT), Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia

leading research worker at the IMT RAS

Y. N. Barabanenkov, V.A Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow, Russia

leading research worker at the IRE RAS

S. A. Nikitov, leading research worker at the IRE RAS

leading research worker at the IRE RAS

References


  1. J. B. Pendry, D. Schurig, D. R. Smith, Controlling electromagnetic fields, Science, 312, 1780, 2006.
    View Article

  2. U. Leonardt, T. G. Philbin, General relativity in electrical engineering, New J. Phys. 8, 247, 2006.
    View Article

  3. U. Leonhardt, Optical conformal mapping, Science 312: 1777- 1780, 2006.
    View Article

  4. F. de Felice, On the gravitational field acting as an optical medium, General Relativity and Gravitation 2: 347-357, 1971.
    View Article

  5. W. Gordon, Zur lichtfortpflanzung nach der relativitätstheorie, Ann. Phys. (Leipzig) 72: 421-456, 1923.

  6. S. Antoci, L. Mihich, A forgotten argument by Gordon uniquely selects Abraham’s tensor as the energy-momentum tensor for the electromagnetic field in homogeneous, isotropic matter, arxiv.org/abs/gr-qc/9704055v1 

  7. L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Fourth Revised English Edition, Pergamon, Oxford, UK, p. 275, 1975. 

  8. Yu. N. Barabanenkov, Maxwell equations in rotating system of reference, Scientific Reports of Higher School, Phys-Math Sciences 1: 141 – 145, 1959.

  9. A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys. 49: 769-822, 1916; translated without p.769 as The Foundation of the General Theory of Relativity, The Principle of Relativity, Dover, New York, pp. 111–164,1952.

  10. J. Plebanski, Electromagnetic waves in gravitational fields, Phys. Rev. 118: 1396 – 1408, 1960.
    View Article

  11. H. Chen, Bae-Ian Wu, B. Zhang, J.A. Kong, Electromagnetic wave interactions with a metamaterial Cloak, Phys. Rev. Lett. 99: 063903, 2007.
    View Article

  12. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of and, Sov. Phys. Usp. 10: 509-514, 1968.
    View Article

  13. N. Fang, H. Lee, Ch. Sun, X. Zhang, Sub–diffraction-limited optical imaging with a silver superlens, Science 308: 534-537, 2005.
    View Article

  14. S. C. Kehr, Y.M. Liu, L. W. Martin, P. Yu, M. Gajek, S.-Y. Yang, C.-H. Yang, M. T. Wenzel, R. Jacob, H.-G. von Ribbeck, M. Helm, X. Zhang, L. M. Eng, R. Ramesh, Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling, Nature Communications 249: 1-9, 2011.

  15. P. Schau, K. Frennera, L. Fub, H. Schweizer, H. Giessenb, W. Osten, Rigorous modeling of meander-type metamaterials for sub-lambda imaging, Proc. SPIE 8083: 808303, 2011.
    View Article

  16. Yu. N. Barabanenkov, M.Yu. Barabanenkov, S.A. Nikitov, Line source wave scattering by line inhomogeneities inside left-handed material slab: Green function approach, Proc. PIERS Cambridge, USA, pp.789-799, 2008.

  17. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, Oxford, UK, p. 251, 1981. R. Merlin, Metamaterials and Landau-Lifshitz permeability arguments: large permittivity begets high-frequency magnetism, PNAS:106, 1693-1698, 2009.
    View Article

  18. L. Tsang, J.A. Kong, R. Shin, Theory of Microwave Remote Sensing, John Wiley, New York, 1985. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85: 3966 – 3969, 2000.
    View Article

  19. Yu. N. Barabanenkov, M.Yu. Barabanenkov, Radiative transfer theory with time delay for effect of a pulse imprisonment in a resonant random media: general transfer equation and point-like scatterer model, Waves in Random Media 7: 607-633, 1997.
    View Article

  20. J. R. Taylor, Scattering Theory: the Quantum Theory of Nonrelativistic Collisions, John Wiley, New York, 1972.

  21. Pi-G. Luan, H.-Da Chien, Ch.-Ch. Chen, Chi-Sh. Tang, Analysis on the imaging properties of a left-handed material slab, arXiv:physics/0311122v2 

  22. C. A. Valagiannopoulos, N. K. Uzunoglu, Simplified model for EM inverse scattering by longitudinal subterranean inhomogeneities exploiting the dawn/dusk ionospheric ridge, IET-Micro. Antennas Propag. 5: 1319 – 1327, 2011.

  23. M. Born, E. Wolf, Principles of Optics, Pergamon Press, New York, 1964.

  24. M. Yu. Barabanenkov, Yu. N. Barabanenkov, S. A. Nikitov, Near field introscopy of two dimensional nonhomogeneous left-handed material slab, Proc. SPIE 8083: 808305, 2011.
    View Article

  25. D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314: 977-980, 2006.
    View Article

  26. B. Zhang, Bae-Ian Wu, Electromagnetic detection of a perfect invisibility cloak, Phys. Rev. Lett. 103: 243901, 2009.
    View Article