Modeling the Non Linear Behavior of a Magnetic Fault Current Limiter

Main Article Content

P. R. Wilson

Abstract

Fault Current Limiters are used in a wide array of applications from small circuit protection at low power levels to large scale high power applications which require superconductors and complex control circuitry. One advantage of  passive fault current limiters (FCL) is the automatic behavior that is dependent on the intrinsic properties of the circuit elements rather than on a complex feedback control scheme making this approach attractive for low cost applications and also where reliability is critical. This paper describes the behavioral modeling of a passive Magnetic FCL and its potential application in practical circuits.

Downloads

Download data is not yet available.

Article Details

How to Cite
Wilson, P. (2015). Modeling the Non Linear Behavior of a Magnetic Fault Current Limiter. Advanced Electromagnetics, 4(3), 1-7. https://doi.org/10.7716/aem.v4i3.265
Section
Research Articles
Author Biography

P. R. Wilson, School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ United Kingdom

Associate Professor in the School of Electronics and Computer Science

References


  1. "Fault Current Limiting-present situation and future needs", CIGRE 23-79-(WG-04)-06, 1979.

  2. King E. F., Chikhani A. Y., Hackam R., Salama M. M. A., A Microprocessor-Controlled Variable Impedance Adaptive Fault Current Limiter, IEEE Transactions on Power Delivery, Vol.5, No.4, pp1830-1838, Oct. 1990.

  3. Ibrahim E. S., Electromagnetic fault current limiter, Electric Power Systems Research, Vol.42, No.3, pp189-194, Sep. 1997.

  4. Inaba T., Performance of a Fault-Current Current Limiter With a New Type of Direct Cooled Tubular Element, IEEE Transactions on Power Apparatus and Systems, Vol.103, No.7, pp1888-1894, 1984.

  5. Karady G. G., Principles of Fault Current Limitation by a resonant LC circuit, IEE Proceedings-C Generation Transmission and Distribution, Vol.139, No.1, pp1-6, Jan. 1992.

  6. Ishigohka T., Sasaki N., Fundamental Test of New DC Superconducting Fault Current Limiter, IEEE Trans-actions on Magnetics, Vol.27, No.2, pp2341-2344, Mar. 1991.

  7. Ito D, Yoneda E. S., Tsurunaga K., Tada T., Hara T., Ohkuma T., Yamamoto T., 6.6 KV/1.5 KA-Class Superconducting Fault Current Limiter Development, IEEE Transactions on Magnetics, Vol.28, No.1, pp438-441, Jan. 1992.

  8. Ito D., Tsurunaga K., Yoneda E. S., Sugiyama Y., Hara T., Okaniwa K., Hoshino H., Yamamoto T., Superconducting Fault Current Limiter Development, IEEE Transactions on Magnetics, Vol.27, No.2, pp2345-2348, Mar. 1991.

  9. Mukhopadhyay, S. C.; Dawson, F. P.; Iwahara, M.; Yamada, S., Analysis, design and experimental results for a passive current limiting device, IEE Proceedings: Electric Power Applications, Vol.146, No.3, (1999), pp309-316.
    View Article

  10. Dawson F. P., Yamada S., Iwahara M., Experimental Results for a 2-Material Passive Di/Dt Limiter, IEEE Transactions on Magnetics, Vol.31, No.6, pp3734-3736, Nov. 1995.
    View Article

  11. Iwahara M., Miyazawa E., A Numerical Method for calculation of Electromagnetic Circuits using the tableau approach, IEEE Transactions on Magnetics, Vol.19, No.6, pp. 2457-2460, 1983.
    View Article

  12. D. C. Jiles, D. L. Atherton, Theory of Ferromagnetic Hysteresis (invited), Journal of Applied Physics, Vol.55, No 6, Mar 1984, 2115-2120.
    View Article

  13. D. C. Jiles, D. L. Atherton, Theory of Ferromagnetic Hysteresis, Journal of Magnetism and Magnetic Materials, 61, pp. 48-60,1986.
    View Article

  14. D. C. Jiles, D. L. Atherton, "Ferromagnetic Hysteresis", IEEE Transactions on Magnetics, Vol19, No.5, Sep 1983, pp.2183-2185.
    View Article

  15. Rozenshtein, V.; Friedman, A.; Wolfus, Y.; Kopansky, F.; Perel, E.; Yeshurun, Y.; Bar Haim, Z.; Ron, Z.; Harel, E.; Pundak, N., "Saturated Cores FCLA New Approach," IEEE Transactions on Applied Superconductivity, vol.17, no.2, pp.1756,1759, June 2007.

  16. Hall, J.; Cheer, A., "Fault current limiter surge protection device for the power grid based upon zero power consumption ceramic ferrite permanent magnets, "22nd International Conference and Exhibition on Electricity Distribution (CIRED2013), pp.1,4, 10-13, June 2013.
    View Article

  17. P. R. Wilson, J. N Ross, A. D. Brown, Predicting total harmonic distortion in a symmetric digital subscriber line transformers by simulation, IEEE Transactions on Magnetics, Vol.40, Issue:3, 2004, pp.15421549.

  18. P. R. Wilson, J. N Ross, A. D. Brown, Modeling frequency-dependent losses in ferrite cores, IEEE Transactions on Magnetics, Vol.40, No.3, 2004, pp.15371541.
    View Article

  19. P. R. Wilson, J. N Ross, A. D. Brown, "Simulation of Magnetic Component Models in Electric Circuits including Dynamic Thermal Effects", IEEE Transactions on Power Electronics, Vol. 17, No.1, 2002, pp.55-65.
    View Article

  20. Al-Junaid, H., Kazmierski, T., Wilson, P. and Baranowski, J., Timeless Discretization of the Magnetization Slope in Modeling of Ferromagnetic Hysteresis, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol.25, No.12, pp2757-2764, 2006.
    View Article

  21. P. R. Wilson, J. N Ross, A. D. Brown, Magnetic Material Model Characterization and Optimization Software, IEEE Transactions on Magnetics, Vol.38, No.2, Part1, 2002, pp.1049-1052.