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ABSTRACT This paper proposes an idea of the use of Dielectric Resonators (DRs) as concentrators of 
alternating magnetic fields for plasma density control applications. The study involves numerical simulations 
using the Method of Auxiliary Sources (MAS) to analyze Dielectric Frequency Selective Surfaces (DFSS) 
composed of periodic dielectric elements. Materials with variable dielectric permittivities, including E-Glass, 
Plexiglass, Taconic CER-10, and Teflon are considered, and their resonance properties are investigated. 
Results indicate that DFSSs can create strong magnetic fields at resonance frequencies, which can be utilized 
for plasma density regulation in processes like thin film deposition. The results demonstrate that materials 
with lower dielectric permittivity, such as Plexiglass and Teflon, exhibit higher resonance quality factors, 
while higher permittivity materials like E-Glass and Taconic CER-10 show poorer quality factors. The study 
emphasizes the potential of DFSSs in enhancing plasma density and improving industrial applications, 
highlighting the importance of precise geometric configurations and material properties in designing effective 
dielectric resonators. 

INDEX TERMS Dielectric Resonators, Frequency Selective Surfaces, Plasma, Numerical Methods.

I. INTRODUCTION 
 n this paper Dielectric resonator (DR) is considered as 
“concentrator” of alternating magnetic field for plasma 

density control applications. Generally, DRs are passive 
components widely used in microwave and millimeter-wave 
applications for their high-quality factor (Q-factor) and low 
loss characteristics. DRs operate based on the principle of 
dielectric resonance, in which electromagnetic waves are 
confined within a specific region inside or outside the 
dielectric with a high permittivity. The resonant frequency of 
a dielectric resonator depends on its physical dimensions, the 
dielectric constant of the material, and the mode of 
resonance. Resonance fields are very strong for both electric 
and magnetic fields. Great interest in DRs is also caused by 
their high frequency stability and low phase noise. These 
features are essential in applications such as radar systems, 
communication transmitters, and local oscillators in 
receivers. DR filters provide high selectivity and low 
insertion loss, making them ideal for use in bandpass and 
bandstop filters. Despite their advantages, DRs face several 
challenges. One major challenge is the precise fabrication 
required to achieve the desired resonant frequencies, 

especially at high frequencies. It is important to propose DRs 
with a shape suitable for fabrication, investigate tolerance of 
their properties relative to geometric inaccuracy.  

Advances in material science and computational modeling 
continue to drive the development of more efficient DRs. As 
technology progresses, DRs are expected to play an 
increasingly important role in the advancement of systems and 
will find broader application. 

The important examples of structures with high-quality 
factor (Q-factor) and strong resonance properties are the 
Frequency Selective Surfaces (FSS) [1, 2, 3]. They are 
engineered structures that exhibit selective frequency filtering 
properties, allowing certain frequencies to pass while blocking 
others. They find applications across various fields such as 
telecommunications, radar, and electromagnetic 
compatibility. Usually, FSS are composed of periodic arrays 
of conductive elements on a dielectric substrate. The behavior 
of these surfaces is governed by their geometry, material 
properties, and the arrangement of the elements. By carefully 
designing these parameters, FSS can be tailored to exhibit 
band-pass, band-stop, high-pass, or low-pass filtering 
characteristics.  
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One special group of FSS is Dielectric Frequency 
Selective Surfaces (DFSS). They are comprised of periodic 
arrays of dielectric elements that can control the propagation 
of electromagnetic waves through selective frequency 
filtering. Unlike traditional metallic FSS, DFSS rely on 
dielectric materials to achieve their frequency selective 
properties. These surfaces leverage the interaction between the 
electromagnetic waves and the dielectric materials' intrinsic 
properties, such as permittivity, and geometric configuration 
as well. 

The interaction of electromagnetic waves with FSS results 
in constructive and destructive interference patterns, which 
define the transmission and reflection properties at different 
frequencies. The key parameters influencing the performance 
include the size, shape, and spacing of the elements, as well as 
the dielectric constant of the substrate. It is worth noting that 
for certain combinations of surface geometry, incidence 
angles, wavelengths, and material characteristics, anomalous 
behavior in diffraction and refraction can be observed. These 
effects are utilized in many practical applications [4, 5]. 

Designing DFSS with desired features of applicability 
requires sophisticated computational tools and techniques [6, 
7, 8, 9]. The following methods are commonly used: 

• Finite-Difference Time-Domain (FDTD): This method 
is effective for time-domain simulations and can model 
the interaction of electromagnetic waves with complex 
dielectric structures. 

• Finite Element Method (FEM): the FEM is used for 
solving complex geometries and material properties, 
providing detailed insights into the electromagnetic field 
distribution. 

• Method of Moments (MoM): the MoM is suitable for 
frequency-domain analysis and is used to solve surface 
integral equations, especially in planar structures. 

• Method of Auxiliary Sources: the MAS is effective for 
frequency domain simulations and can model 
interaction with homogenous dielectric structures with 
complex, smooth shapes. 

The design process involves selecting available, 
appropriate, dielectric materials with desired permittivity and 
loss tangent values. Common materials include ceramics, 
polymers, and composites with high dielectric constants. The 
geometric configuration of the dielectric elements, such as 
their shape, size, and spacing, plays a crucial role in 
determining the DFSS performance. 

It is expected that DFSS can create strong magnetic field at 
resonance frequency. The magnetic field can be controlled by 
electromagnetic waves source intensity. This phenomenon 
that can be used to control plasma density, becomes a kind of 
plasma manipulation instrument [10,11,12]. 

In many applications enhancing plasma density in specific 
regions is crucial. An essential example is magnetron, where 
higher plasma densities lead to higher ionization rates inside 
the magnetron chamber, resulting in increased ion flux 
towards the target surface. This, in turn, enhances the 

sputtering yield and deposition rate, crucial for various 
industrial applications such as semiconductor manufacturing, 
optical coatings, and thin film solar cells. Additionally, 
increased plasma density can improve film properties such as 
density, adhesion, and uniformity. 

The primary objective of the present study is to explore the 
influence of different grating shapes and materials on 
formation magnetic field at resonance frequency. This 
includes investigation of various geometric parameters such 
as: grating period, shape of boundaries, as well as different 
dielectric materials. The paper is structured by following way: 
Section 2 addresses to the Method of Auxiliary Sources. The 
periodic green function is constructed(derived) for solving 2D 
problems with p-polarization and periodic dielectric structures 
of arbitrary shape. Section 3 describes geometries and 
materials of the considered periodic dielectric structures. In the 
Section 4 results of numerical simulation are presented. 
Section 5 contains conclusions. 

II. THE METHOD OF AUXILIARY SOURCES 
The MAS is a numerical technique used to solve boundary 
problems in static cases or when the time factor is harmonic. 
V. Kupradze formulated the foundational principles of this 
method, setting it apart from the integral equation method 
[13]. The integral formulation of the MAS is based on the 
concept of an auxiliary contour or surface (hereafter referred 
to as contour). V. Kupradze provided proof of the 
completeness and linear independence of the series of 
fundamental solutions, with poles distributed over a closed 
auxiliary contour. 

In the MAS, the fundamental solutions correspond to either 
the Helmholtz or Laplace equations, depending on the 
problem. For example, in the case of a single object, the 
scatterer's boundary contour divides space into two areas 
physically not connected to each other. Auxiliary contours are 
defined for each area in its non-physical counterpart [14,15]. 
For a dielectric object, two auxiliary contours are needed: one 
for the outer area and one for the inner area. In the case of a 
perfectly or highly conductive object, to express scattered field 
one auxiliary contour is sufficient. 

The approximate solution in the MAS is represented by a 
finite series of fundamental solutions (e.g., Green functions) 
[16]. The coefficients of the series elements are calculated to 
satisfy the boundary conditions. For this the system of linear 
equations should be solved. The number of linear equations, 
i.e. the number of unknowns, depends on particular case: 
wavelength, incidence angle, surface geometry etc. 
Convergence of the solution is achieved similarly to the 
Method of Moments (MoM) [17,18,19], by repeatedly solving 
the problem with an increasing number of series elements until 
the accuracy becomes acceptable. The MAS circumvents the 
singularity problems typical of MoM or the Integral Equation 
Method, allowing for the evaluation of boundary condition 
fulfillment and the assessment of solution accuracy. 
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As mentioned above, the aim is to investigate the DFSS 
numerically. The MAS should be formulated for 2D spatially 
periodic problems with p-polarization [20]. 

For convenience, the harmonic 𝑒"#$%time factor is chosen 
and omitted in further expressions. Mathematically, there is no 
preference between 𝑒"#$%and 𝑒#$% time factors. This is just a 
small remark for computation. When calculating wave 
number of a medium with complex permittivity and 
permeability, calculation should be done using the formula 
𝑘 = 𝑘(√𝜀√𝜇  [21], where k is the wave number in medium, 
𝑘( is the wave number in free space; ε and µ are the 
permittivity and permeability of the medium. Therefore, to 
obtain physically meaningful results, the order of operations 
matters: take the square roots first √𝜀√𝜇, and then perform the 
multiplication.  

The problem can be reduced to 2D when the field is 
homogenous in one direction [22]. The electric vector 
potential field 𝐹⃗. produced by periodic monopole sources 
distributed along x axis is given by following sums:  

𝐹⃗.(𝑥, 𝑦) =
#45467⃗
8

= ∑ exp( 𝑖𝛥𝜙𝑛)𝐻(
(B)(𝑘𝑟)	E

FG"E 	    (1) 

𝑟 = H(𝑥 − 𝑛𝑑 − 𝑥K)L + (𝑦 − 𝑦K)L 
 
Here 𝐼. = (0,0,1) specifies direction of magnetic current; 
𝑥K, 𝑦K are coordinates of the n=0 monopole; 𝑥, 𝑦 - are 
coordinates of the observation point; 𝑘 is the wave number in 
this medium; 𝜀Q is relative permittivity of the medium; 𝜀( is 
electric constant; 𝐻(

(B) is zeroth order Hankel’s function of first 
kind; d stands for a period of array of monopoles along in x-
direction; 𝛥𝜙 is the phase shift. Sum (1) converges very 
slowly.  

In general, the Poisson summation formula 
																																∑ 𝑔( 𝑝)∞

TG"∞ = ∑ 𝑓(2𝜋𝑞)∞
YG"∞     

where,  
																																										𝑔(𝑝) = ∫ 𝑒"[T%𝑓(𝑡)𝑑𝑡E

"E   
is applied to (1) that gives following sum:  

𝐹⃗.(𝑥, 𝑧) =
45467⃗^
L_

∑ `aT(#bcc⃗ ⋅ec⃗ f)
egf

E
FG"E             (2) 

Where 𝜌⃗ = (𝑥 − 𝑥K, 𝑦 − 𝑦K, 0), 𝑘c⃗ F = (𝑘aF, 𝑘iF, 0) is complex 
vector, with components  
														𝑘aF =

jklLmF
_

, 𝑘iF = 𝑠𝑖𝑔𝑛(𝑦 − 𝑦K)H𝑘L − (𝑘aF)L	  
Only first root of H𝑘L − (𝑘aF)L is applicable. 𝑘oF depends on 
sign(𝑦 − 𝑦K)	indicating that space “cut” exists on 𝑦 = 𝑦K 
plane. It is easy to note, for any k, such m exists, when |𝑛| >
𝑚, 𝑘L − (𝑘aF)L < 0. Considering this, for 𝜌i ≠ 0, the sum (2) 
converges like 
																																																				∑ `aT("F)

F
E
FGB   

However, if 𝜌i = 0, there is no convergence, like the sum  
	∑ B

F
E
FGB 		 [23]. 

Expressing  

																														𝐻cc⃗ = 𝑖𝜔𝐹⃗.	𝑎𝑛𝑑	𝐸c⃗ = − B
4546

𝛻c⃗ × 𝐹⃗.  

where ω is angular frequency, one obtains: 

𝐻a = 0,𝐻i = 0, 𝐻o =
$4546
L_

∑ `aT(#bcc⃗ ⋅ec⃗ f)
ezf

E
FG"E            (3) 

and 

																									𝐸a =
B
L_
∑ 𝑒𝑥𝑝( 𝑖𝜌⃗ ⋅ 𝑘c⃗ F)E
FG"E ,	 and  

𝐸i =
B
L_
∑ 𝑘aF

`aT(#bcc⃗ ⋅ec⃗ f)
egf

E
FG"E , 𝐸o = 0																				(4) 

𝐸i	converges as (2), 𝐻o	converges like ∑ 𝑒𝑥𝑝( − |𝑛|)E
FG"E , 

 when 𝜌i ≠ 0. 
Other details of solving boundary problems by the MAS can 
be found in [24]. Results presented in [25] were taken as 
benchmark problems in [24]. 

III. FSS GEOMETRY AND MATERIALS 
 
For numerical experiments, we consider dielectric layers with 
a periodic profile shown in the Figure 1. The shape repeats 
infinitely in the horizontal direction, creating a periodic 
structure. The geometric parameters of the periodic structure 
are presented in the Figure 1 down panels.  

 

FIGURE 1. Geometry of DFSS. 

 
Several parameters determine the grating configuration: 

lattice period, w - mid-width of the “hump”, h1 - height of the 
“hump”, h2 - thickness of the base layer, and angle α - the 
"hump" slope angle. Parameters w, h1, h1 are fixed; They are 
presented as unitless values, measured in units of the period. 
Specifically, w=0.5, h1=0.3, h2=0.3. It is important to note that 
the shape is not composed of straight lines; instead, it is curved 
at the joints with a radius of curvature of 0.3. This design 
choice is made to accommodate the MAS, which is less 
efficient when dealing with sharp angles or edges in geometric 
objects. The method generally produces stable results when 
the distance between the real and auxiliary contours is less 

period

period

Incide nt wave
downward

Incide nt wave
upward
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than the radius of curvature. As this distance decreases, the 
efficiency of the method also decreases. 

Three different types of geometries were considered where 
α takes the following values: 70°, 95°, and 110° shown on the 
Figure. 2. Calculations were done for many different angles 
between 70° and 110°. Only the major results are presented 
below. 

 

 
FIGURE 2.  The angle α takes the following values: 70°, 95°, and 110°, which 
correspond to the geometry profile presented in the picture 

 
These variations aim to investigate the tolerance of 

resonance frequencies to fabrication accuracy. 
The proposed Dielectric Frequency Selective Surfaces 

(DFSS) are considered for various dielectric materials. The 
chosen dielectric materials are E-Glass, Plexiglass, Taconic 
CER-10, and Teflon. The relative dielectric permittivity of 
these materials is as follows: 6.22 for E-Glass, 2.59 for 
Plexiglass, 10.0 for Taconic CER-10, and 2.1 for Teflon. 

IV. NUMERICAL RESULTS 
 
Based on the above formulations, a FORTRAN computational 
code implementing the MAS has been developed and used in 
numerical experiments. To validate used method, we resort to 
benchmarking data of [26]. The work provides a relevant 
reference, presenting numerical results related to a periodic 
dielectric grating structure. Particularly, in [26] the effect of 
periodicity on plasmon-assisted scattering and absorption of 
visible light by infinite and finite gratings of circular silver 
nanowires is studied (Figure 3).  

 

 

FIGURE 3.  Infinite periodic grating of circular cylinders illuminated by a 
normally incident plane wave. Geometry concepts discussed in source [24]. 
 
The Figure 4 shows that the present method for the periodic 
grating with circular cylinders gives results that are in good 
agreement with those of [26]. We note that the comparison is 
made for E-Glass. 
 

a                                                     b 

 
c                                                     d 

FIGURE 4.  Demonstration of the MAS codes benchmarking [26]. Reflectance 
(top panels) and absorbance (down panels) of infinite grating of silver wires as 
a function of the wavelength and wire radius for the normal incidence of the H-
polarized plane wave. The period is p = 350 nm. The pictures on the left side, 
a and c, were taken from reference [26], and the pictures on the right side, b 
and d are calculated using the MAS. 
 

Diffraction on cylindrical surfaces is considered in [27, 28], 
where the critical radius for the auxiliary contour is 
determined. In the present study, the incident field is a plane 
wave, indicating that the source is infinitely far away. 
Additionally, the junctions of the flat areas of the contour are 
approximated by small-radius (0.03 - in period units) arcs. 
Considering these two factors, the critical radii become 
infinitely small, and thus the auxiliary contours naturally 
envelope conjugate points, as the auxiliary contours are 
separated from the real ones by half the radius. Consequently, 
oscillations in the distribution of auxiliary sources (currents) 
do not occur. 

It is important to demonstrate the convergence of solutions. 
Numerical calculations demonstrate that convergence is 
achieved when number of linear equations is nearly 200 per 
unit of wavelength. p

Incide nt wave



 D. Kakulia et al. 

 

 VOL. 13, NO. 2, AUGUST 2024 
 

72 

The Figure 5 a) shows the magnetic field values calculated 
at the test point (0,0.15,0) (in period units) over a 
wavelength/period range of [0.3,3]. Calculations are 
performed for α=850 and with different numbers of unknowns: 
300, 350, and 450. 

FIGURE 5.  Curves of magnetic field dependences on wavelength for 
solutions with different numbers of unknows n. Zoomed-in plot of the Figure 5a 
graph, near the resonance point. 
 
The figure illustrates that the developed code can obtain stable 
results. The Figure 5 b) shows a zoomed-in plot near the 
resonance point. As one can see, the accuracy of finding the 
resonance frequency is about 0.5%, while the accuracy of 
determining the peak value is 10%. This discrepancy 
represents the largest difference observed in the results. As the 
geometric sizes are presented as unitless values, it is 
reasonable to use unitless values for wavelengths too. 

 

FIGURE 6.  Magnetic fields in the test point, E-Glass case. a) incident wave 
downward, b) incident wave upward 

 
All following results, as in previous cases, are obtained in 

the same wavelength range and relate to an incident plane 
wave with p-polarization, presenting absolute value the 
magnetic field. Two directions of unit amplitude plane wave 

incidence are considered: one vertically downward and the 
other vertically upward. 
The Figure 6 shows magnetic field in the test point, when a 
plane wave with downward and upward direction incidents 
on the DFSS made of E Glass material. Results are obtained 
for different values of 𝛼. 

It can be noted that in all cases, the magnetic field 
extremum at 1.7 (Figure 6 a) remains at the same location, 
although its value changes. This extremum with highest 
wavelength corresponds to the first resonance in a frequency 
range. This stability, despite variations in geometry, is 
important for fabrication. The lowest resonance frequency 
can find its application in the regulation of plasma density. 

Let consider results for the same DFSSs when the incident 
plane wave has upward direction. Corresponding results are 
presented at the Figure 6b. In the upward cases, local extrema 
of the magnetic field at a wavelength of 1.7 still occur. They 
have changed character and become weaker compared to the 
downward cases. It is important to note that the resonance 
exposes itself while the DFSS acts as a shield for the test 
point. 

Apparently, if we choose periodic grating for both sides of 
DFSS, then the resonance filed distribution would be 
symmetric, reflecting the geometry, and providing stronger 
fields. However, demonstrating asymmetric results is more 
informative. 

The next case involves Plexiglass material. As shown in the 
Figure 7, the highest wavelength resonance occurs at 1.25 
(Figure 7a). This resonance is very strong and stable for all 
cases compared to the E-Glass cases. It exhibits an eye-
catching quality factor. Since the permittivity of Plexiglass is 
lower than that of E-Glass, the resonance occurs at a lower 
value of wavelength.  

 

 
FIGURE 7.  Magnetic fields in the test point, Plexiglass case. a) incident wave 
direction is downward, b) incident wave direction is upward  

 
The Figure 8 presents results related to Taconic CER-10 

material. This material has the highest dielectric permittivity 
between considered materials. As it was expected it has local 
extremum at 2.054 of wavelength, which is greater than that E 

a 

b 
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Glass has. The Figures 8 a) and b) show relatively stable 
location of “resonance frequency”. The quality factor looks 
pitiful. The Figure 8a) shows some complexity, while The 
Figure 8b) shows a local minimum of the magnetic field. The 
shielding effect of the Taconic CER-10 DFSS is strongly 
exhibited.  

 
FIGURE 8.  Magnetic fields in the test point, Taconic CER-10 case. a) incident 
wave downward, b) incident wave upward  

 
The structure demonstrates resonance at the highest 

wavelength among the other DFSS. Its potential for 
application in the regulation of plasma density is promising. It 
is important to see how looks the resonance field distribution 
at 2.054 wavelength. 

 

a         b  
FIGURE 9.  The Magnetic field distribution at 2.054 wavelength, incident wave 
downward (a) and upward (b), Taconic CER-10, α=850 case 

 
The Figure 9 shows the magnetic field distribution at a 

wavelength of 2.054. The pulse-shaped profile has α=850. 
The material is Taconic CER-10, and the plane wave is 
incident in the downward direction. The magnetic field 
distribution exhibits a distinct resonant field shape, which 
stands out against the plane wave background. Sizes of the 
field distribution are presented also unitless in period’s units.  

The last material considered for the DFSSs is Teflon. Its 
dielectric permittivity is the lowest among the considered 
materials. As shown in the Figure 10 a) and b), the highest 
wavelength resonance occurs at 1.19. This resonance is very 
strong and stable for all cases, similar to the Plexiglass cases. 
The resonance curve exhibits a good quality factor. 

In comparison, the dielectric permittivity of Plexiglass is 
higher than that of Teflon, resulting in a better resonance 
quality factor. On the other hand, higher dielectric 
permittivity in the cases of E-Glass and Taconic CER-10 are 
accompanied by poorer quality factors. 

 
FIGURE 10.  Magnetic fields in the test point, Taconic CER-10 case. a) 
incident wave downward, b) incident wave upward  

 
The different incidence angles should be analyzed in a 

separate investigation. Here, only cases with small incidence 
angles are demonstrated. As the Figures 11 and 12 show, at 
large wavelengths, there are no significant differences in the 
obtained field configurations compared to normal incidence. 
However, the differences become apparent at shorter 
wavelengths. 

 

 
FIGURE 11.  Magnetic fields in the test point, for E-Glass and different 
incidence angles q.  
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FIGURE 12.  Magnetic fields in the test point for Taconic CER-10 and different 
incidence angles q. 

V. CONCLUSION 
This study formulated the magnetic current’s periodic Green 
function and applied it within the MAS framework to solve 
problems involving p-polarized plane wave incidence on 
Dielectric Frequency Selective Surfaces (DFSS) and 
investigated the potential of Dielectric Frequency Selective 
Surfaces (DFSS) as concentrators of alternating magnetic 
fields for plasma density control applications. By employing 
the MAS, DFSSs composed of various dielectric materials, 
including E-Glass, Plexiglass, Taconic CER-10, and Teflon 
were analyzed. Numerical simulations revealed several key 
insights. 

It is found that the dielectric permittivity of the material 
significantly affects the resonance properties and quality 
factors of DFSSs. Materials with lower dielectric 
permittivity, such as Plexiglass and Teflon, exhibited higher 
resonance quality factors. In contrast, higher permittivity 
materials like E-Glass and Taconic CER-10 showed poorer 
quality factors.  

The geometric configuration of DFSSs plays a crucial role 
in their performance. The considered profile with periodic 
“humps” having varied slope angles demonstrated that 
resonance frequencies remained relatively stable despite 
geometric variations, which is essential for practical 
fabrication. 

The study highlighted specific resonance frequencies for 
different materials, with the highest wavelength resonances 
occurring at 2.054 for Taconic CER-10 and 1.19 for Teflon. 
These resonances are strong and stable, making DFSSs 
suitable for applications requiring precise control of 
magnetic fields and plasma density. The ability of DFSSs to 
generate strong magnetic fields at resonance frequencies 
suggests their potential use in enhancing plasma density for 
industrial processes like thin film deposition.  

For small incidence angles in the large wavelength range, 
the field configuration exhibits smooth behavior. At short 
wavelengths, an extremely high number of resonances is 
observed. 

Overall, the results of this study demonstrate the 
feasibility and effectiveness of DFSSs in controlling 
magnetic fields and plasma density. The insights gained 

regarding material selection and geometric design provide a 
foundation for further research and development of advanced 
dielectric resonators for various industrial applications 
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