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ABSTRACT This paper proposes an idea of the use of Dielectric Resonators (DRs) as concentrators of
alternating magnetic fields for plasma density control applications. The study involves numerical simulations
using the Method of Auxiliary Sources (MAS) to analyze Dielectric Frequency Selective Surfaces (DFSS)
composed of periodic dielectric elements. Materials with variable dielectric permittivities, including E-Glass,
Plexiglass, Taconic CER-10, and Teflon are considered, and their resonance properties are investigated.
Results indicate that DFSSs can create strong magnetic fields at resonance frequencies, which can be utilized
for plasma density regulation in processes like thin film deposition. The results demonstrate that materials
with lower dielectric permittivity, such as Plexiglass and Teflon, exhibit higher resonance quality factors,
while higher permittivity materials like E-Glass and Taconic CER-10 show poorer quality factors. The study
emphasizes the potential of DFSSs in enhancing plasma density and improving industrial applications,
highlighting the importance of precise geometric configurations and material properties in designing effective

dielectric resonators.

INDEX TERMS Dicelectric Resonators, Frequency Selective Surfaces, Plasma, Numerical Methods.

I. INTRODUCTION
I n this paper Dielectric resonator (DR) is considered as
“concentrator” of alternating magnetic field for plasma
density control applications. Generally, DRs are passive
components widely used in microwave and millimeter-wave
applications for their high-quality factor (Q-factor) and low
loss characteristics. DRs operate based on the principle of
dielectric resonance, in which electromagnetic waves are
confined within a specific region inside or outside the
dielectric with a high permittivity. The resonant frequency of
a dielectric resonator depends on its physical dimensions, the
dielectric constant of the material, and the mode of
resonance. Resonance fields are very strong for both electric
and magnetic fields. Great interest in DRs is also caused by
their high frequency stability and low phase noise. These
features are essential in applications such as radar systems,
communication transmitters, and local oscillators in
receivers. DR filters provide high selectivity and low
insertion loss, making them ideal for use in bandpass and
bandstop filters. Despite their advantages, DRs face several
challenges. One major challenge is the precise fabrication
required to achieve the desired resonant frequencies,
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especially at high frequencies. It is important to propose DRs
with a shape suitable for fabrication, investigate tolerance of
their properties relative to geometric inaccuracy.

Advances in material science and computational modeling
continue to drive the development of more efficient DRs. As
technology progresses, DRs are expected to play an
increasingly important role in the advancement of systems and
will find broader application.

The important examples of structures with high-quality
factor (Q-factor) and strong resonance properties are the
Frequency Selective Surfaces (FSS) [1, 2, 3]. They are
engineered structures that exhibit selective frequency filtering
properties, allowing certain frequencies to pass while blocking
others. They find applications across various fields such as
telecommunications, radar, and electromagnetic
compatibility. Usually, FSS are composed of periodic arrays
of conductive elements on a dielectric substrate. The behavior
of these surfaces is governed by their geometry, material
properties, and the arrangement of the elements. By carefully
designing these parameters, FSS can be tailored to exhibit
band-pass, band-stop, high-pass, or low-pass filtering
characteristics.
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One special group of FSS is Dielectric Frequency
Selective Surfaces (DFSS). They are comprised of periodic
arrays of dielectric elements that can control the propagation
of electromagnetic waves through selective frequency
filtering. Unlike traditional metallic FSS, DFSS rely on
dielectric materials to achieve their frequency selective
properties. These surfaces leverage the interaction between the
electromagnetic waves and the dielectric materials' intrinsic
properties, such as permittivity, and geometric configuration
as well.

The interaction of electromagnetic waves with FSS results
in constructive and destructive interference patterns, which
define the transmission and reflection properties at different
frequencies. The key parameters influencing the performance
include the size, shape, and spacing of the elements, as well as
the dielectric constant of the substrate. It is worth noting that
for certain combinations of surface geometry, incidence
angles, wavelengths, and material characteristics, anomalous
behavior in diffraction and refraction can be observed. These
effects are utilized in many practical applications [4, 5].

Designing DFSS with desired features of applicability
requires sophisticated computational tools and techniques [6,
7, 8, 9]. The following methods are commonly used:

* Finite-Difference Time-Domain (FDTD): This method
is effective for time-domain simulations and can model
the interaction of electromagnetic waves with complex
dielectric structures.

* Finite Element Method (FEM): the FEM is used for
solving complex geometries and material properties,
providing detailed insights into the electromagnetic field
distribution.

* Method of Moments (MoM): the MoM is suitable for
frequency-domain analysis and is used to solve surface
integral equations, especially in planar structures.

* Method of Auxiliary Sources: the MAS is effective for
frequency domain simulations and can model
interaction with homogenous dielectric structures with
complex, smooth shapes.

The design process involves selecting available,
appropriate, dielectric materials with desired permittivity and
loss tangent values. Common materials include ceramics,
polymers, and composites with high dielectric constants. The
geometric configuration of the dielectric elements, such as
their shape, size, and spacing, plays a crucial role in
determining the DFSS performance.

It is expected that DFSS can create strong magnetic field at
resonance frequency. The magnetic field can be controlled by
electromagnetic waves source intensity. This phenomenon
that can be used to control plasma density, becomes a kind of
plasma manipulation instrument [10,11,12].

In many applications enhancing plasma density in specific
regions is crucial. An essential example is magnetron, where
higher plasma densities lead to higher ionization rates inside
the magnetron chamber, resulting in increased ion flux
towards the target surface. This, in turn, enhances the
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sputtering yield and deposition rate, crucial for various
industrial applications such as semiconductor manufacturing,
optical coatings, and thin film solar cells. Additionally,
increased plasma density can improve film properties such as
density, adhesion, and uniformity.

The primary objective of the present study is to explore the
influence of different grating shapes and materials on
formation magnetic field at resonance frequency. This
includes investigation of various geometric parameters such
as: grating period, shape of boundaries, as well as different
dielectric materials. The paper is structured by following way:
Section 2 addresses to the Method of Auxiliary Sources. The
periodic green function is constructed(derived) for solving 2D
problems with p-polarization and periodic dielectric structures
of arbitrary shape. Section 3 describes geometries and
materials of the considered periodic dielectric structures. In the
Section 4 results of numerical simulation are presented.
Section 5 contains conclusions.

Il. THE METHOD OF AUXILIARY SOURCES

The MAS is a numerical technique used to solve boundary
problems in static cases or when the time factor is harmonic.
V. Kupradze formulated the foundational principles of this
method, setting it apart from the integral equation method
[13]. The integral formulation of the MAS is based on the
concept of an auxiliary contour or surface (hereafter referred
to as contour). V. Kupradze provided proof of the
completeness and linear independence of the series of
fundamental solutions, with poles distributed over a closed
auxiliary contour.

In the MAS, the fundamental solutions correspond to either
the Helmholtz or Laplace equations, depending on the
problem. For example, in the case of a single object, the
scatterer's boundary contour divides space into two areas
physically not connected to each other. Auxiliary contours are
defined for each area in its non-physical counterpart [14,15].
For a dielectric object, two auxiliary contours are needed: one
for the outer area and one for the inner area. In the case of a
perfectly or highly conductive object, to express scattered field
one auxiliary contour is sufficient.

The approximate solution in the MAS is represented by a
finite series of fundamental solutions (e.g., Green functions)
[16]. The coefficients of the series elements are calculated to
satisfy the boundary conditions. For this the system of linear
equations should be solved. The number of linear equations,
i.e. the number of unknowns, depends on particular case:
wavelength, incidence angle, surface geometry etc.
Convergence of the solution is achieved similarly to the
Method of Moments (MoM) [17,18,19], by repeatedly solving
the problem with an increasing number of series elements until
the accuracy becomes acceptable. The MAS circumvents the
singularity problems typical of MoM or the Integral Equation
Method, allowing for the evaluation of boundary condition
fulfillment and the assessment of solution accuracy.
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As mentioned above, the aim is to investigate the DFSS
numerically. The MAS should be formulated for 2D spatially
periodic problems with p-polarization [20].

For convenience, the harmonic e ~*ttime factor is chosen
and omitted in further expressions. Mathematically, there is no
preference between e ~“tand e'“? time factors. This is just a
small remark for computation. When calculating wave
number of a medium with complex permittivity and
permeability, calculation should be done using the formula
k = kovVe\/u [21], where k is the wave number in medium,
k, is the wave number in free space; € and p are the
permittivity and permeability of the medium. Therefore, to
obtain physically meaningful results, the order of operations
matters: take the square roots first vev/, and then perform the
multiplication.

The problem can be reduced to 2D when the field is
homogenous in one direction [22]. The electric vector
potential field ﬁM produced by periodic monopole sources
distributed along x axis is given by following sums:

Fy(ry) =22 = 50 exp(idpm)HP (k) (1)

4

r=yJ@x-nd-x)+@ -y

Here fM = (0,0,1) specifies direction of magnetic current;
x',y" are coordinates of the n=0 monopole; x,y - are
coordinates of the observation point; k is the wave number in
this medium; &, is relative permittivity of the medium; &, is
electric constant; H (()1) is zeroth order Hankel’s function of first
kind; d stands for a period of array of monopoles along in x-
direction; A¢ is the phase shift. Sum (1) converges very

slowly.
In general, the Poisson summation formula
p=—09(P) = Xg=—o f(27q)
where,

[ee)

9 = [ e P f(D)dt
is applied to (1) that gives following sum:
> c0&rlM voo exp(ip-k™)
FM(x’Z) = OZ—dMan—oo% (2)
Where g = (x —x',y —y',0), k™ = (k}, k3, 0) is complex
vector, with components

i = 2 i = sign(y -y Wk — (kE)?

Only first root of 1/ k? — (k)2 is applicable. k}' depends on
sign(y — y') indicating that space “cut” exists on y =y’
plane. It is easy to note, for any k, such m exists, when |n| >
m, k? — (k})* < 0. Considering this, for p,, # 0, the sum (2)
converges like

yoo xp(n)
n=1
n
However, if p,, = 0, there is no convergence, like the sum

o 1
Zn:lz [23]'
Expressing

ﬁ=iwﬁM and E = —

where o is angular frequency, one obtains:

70

WELEr Voo exp(ip-k™)
He=0,H, = 0,H, =257 P82 (3)

and
E, = iZ;f:—oo exp(ip - k™), and

_1lyo n exp(ipE™)
Ey - zan—oo kx k}}

E; =0 4)
E,, converges as (2), H, converges like X7 _ exp( — |nl),
when p,, # 0.

Other details of solving boundary problems by the MAS can
be found in [24]. Results presented in [25] were taken as
benchmark problems in [24].

lll. FSS GEOMETRY AND MATERIALS

For numerical experiments, we consider dielectric layers with
a periodic profile shown in the Figure 1. The shape repeats
infinitely in the horizontal direction, creating a periodic
structure. The geometric parameters of the periodic structure
are presented in the Figure 1 down panels.

Incide nt wave
downward
z

o porod
y f Incide nt wave
upward

period

FIGURE 1. Geometry of DFSS.

Several parameters determine the grating configuration:
lattice period, w - mid-width of the “hump”, /1 - height of the
“hump”, /2 - thickness of the base layer, and angle a - the
"hump" slope angle. Parameters w, s, i are fixed; They are
presented as unitless values, measured in units of the period.
Specifically, w=0.5, h1=0.3, 1=0.3. It is important to note that
the shape is not composed of straight lines; instead, it is curved
at the joints with a radius of curvature of 0.3. This design
choice is made to accommodate the MAS, which is less
efficient when dealing with sharp angles or edges in geometric
objects. The method generally produces stable results when
the distance between the real and auxiliary contours is less
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than the radius of curvature. As this distance decreases, the
efficiency of the method also decreases.

Three different types of geometries were considered where
a takes the following values: 70°, 95°, and 110° shown on the
Figure. 2. Calculations were done for many different angles
between 70° and 110°. Only the major results are presented
below.

N 95°

N110°

FIGURE 2. The angle a takes the following values: 70°, 95°, and 110°, which
correspond to the geometry profile presented in the picture

These variations aim to investigate the tolerance of
resonance frequencies to fabrication accuracy.

The proposed Dielectric Frequency Selective Surfaces
(DFSS) are considered for various dielectric materials. The
chosen dielectric materials are E-Glass, Plexiglass, Taconic
CER-10, and Teflon. The relative dielectric permittivity of
these materials is as follows: 6.22 for E-Glass, 2.59 for
Plexiglass, 10.0 for Taconic CER-10, and 2.1 for Teflon.

IV. NUMERICAL RESULTS

Based on the above formulations, a FORTRAN computational
code implementing the MAS has been developed and used in
numerical experiments. To validate used method, we resort to
benchmarking data of [26]. The work provides a relevant
reference, presenting numerical results related to a periodic
dielectric grating structure. Particularly, in [26] the effect of
periodicity on plasmon-assisted scattering and absorption of
visible light by infinite and finite gratings of circular silver
nanowires is studied (Figure 3).

Incide nt wave
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FIGURE 3. Infinite periodic grating of circular cylinders illuminated by a
normally incident plane wave. Geometry concepts discussed in source [24].

The Figure 4 shows that the present method for the periodic
grating with circular cylinders gives results that are in good
agreement with those of [26]. We note that the comparison is
made for E-Glass.

160

1

Radius [nm]

250 300 350 400 450 500 200 250 300 350 400 450 500
Wavelength [nm] Wavelength [nm]

a b

/

100

Radius [nm]

250 300 350 400 450 500 200 250 300 350 400 450 500
Wavelength [nm] Wavelength [nm]

c d
FIGURE 4. Demonstration of the MAS codes benchmarking [26]. Reflectance
(top panels) and absorbance (down panels) of infinite grating of silver wires as
a function of the wavelength and wire radius for the normal incidence of the H-
polarized plane wave. The period is p = 350 nm. The pictures on the left side,

a and ¢, were taken from reference [26], and the pictures on the right side, b
and d are calculated using the MAS.

Diffraction on cylindrical surfaces is considered in [27, 28],
where the critical radius for the auxiliary contour is
determined. In the present study, the incident field is a plane
wave, indicating that the source is infinitely far away.
Additionally, the junctions of the flat areas of the contour are
approximated by small-radius (0.03 - in period units) arcs.
Considering these two factors, the critical radii become
infinitely small, and thus the auxiliary contours naturally
envelope conjugate points, as the auxiliary contours are
separated from the real ones by half the radius. Consequently,
oscillations in the distribution of auxiliary sources (currents)
do not occur.

It is important to demonstrate the convergence of solutions.
Numerical calculations demonstrate that convergence is
achieved when number of linear equations is nearly 200 per
unit of wavelength.
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The Figure 5 a) shows the magnetic field values calculated
at the test point (0,0.15,0) (in period units) over a
wavelength/period range of [0.3,3]. Calculations are
performed for a=85° and with different numbers of unknowns:
300, 350, and 450.

£l (0.1709,0.013)
L )

7><10‘3 12 (0.1711,0,012)

1 (0.4740, 0,011)

n=300
n=350
n=450

H, Am

€
<
I‘ S

6 0.16 0.1680.1710.174 0.18

Wavelength in period units
al
oL
0.1 0.15 0.2 0.25 0.3
Wavelength in period units
FIGURE 5. Curves of magnetic field dependences on wavelength for

solutions with different numbers of unknows n. Zoomed-in plot of the Figure 5a
graph, near the resonance point.

The figure illustrates that the developed code can obtain stable
results. The Figure 5 b) shows a zoomed-in plot near the
resonance point. As one can see, the accuracy of finding the
resonance frequency is about 0.5%, while the accuracy of
determining the peak value is 10%. This discrepancy
represents the largest difference observed in the results. As the
geometric sizes are presented as unitless values, it is
reasonable to use unitless values for wavelengths too.

EGLASS

-3 -3
20 & 10‘ 20 ><10‘
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18 18 a=95° |
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12 12
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| \RY, L )
I |
\ | | g
2 " \ f z
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a b

FIGURE 6. Magnetic fields in the test point, E-Glass case. a) incident wave
downward, b) incident wave upward

All following results, as in previous cases, are obtained in
the same wavelength range and relate to an incident plane
wave with p-polarization, presenting absolute value the
magnetic field. Two directions of unit amplitude plane wave
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incidence are considered: one vertically downward and the
other vertically upward.

The Figure 6 shows magnetic field in the test point, when a
plane wave with downward and upward direction incidents
on the DFSS made of E Glass material. Results are obtained
for different values of a.

It can be noted that in all cases, the magnetic field
extremum at 1.7 (Figure 6 a) remains at the same location,
although its value changes. This extremum with highest
wavelength corresponds to the first resonance in a frequency
range. This stability, despite variations in geometry, is
important for fabrication. The lowest resonance frequency
can find its application in the regulation of plasma density.

Let consider results for the same DFSSs when the incident
plane wave has upward direction. Corresponding results are
presented at the Figure 6b. In the upward cases, local extrema
of the magnetic field at a wavelength of 1.7 still occur. They
have changed character and become weaker compared to the
downward cases. It is important to note that the resonance
exposes itself while the DFSS acts as a shield for the test
point.

Apparently, if we choose periodic grating for both sides of
DFSS, then the resonance filed distribution would be
symmetric, reflecting the geometry, and providing stronger
fields. However, demonstrating asymmetric results is more
informative.

The next case involves Plexiglass material. As shown in the
Figure 7, the highest wavelength resonance occurs at 1.25
(Figure 7a). This resonance is very strong and stable for all
cases compared to the E-Glass cases. It exhibits an eye-
catching quality factor. Since the permittivity of Plexiglass is
lower than that of E-Glass, the resonance occurs at a lower
value of wavelength.

PLEXIGLASS
-3 -3
30 x 10 . . 30 x 10 .
a=70°
a=95°
25 25+ a=110°
20t 20t
€ €
<15 <15
I I
10 ’ 10 “
i I
50 | 5& / \
-
( ) ]
o | —— i
0}3\4 T 0

1 1.5 2 1 1.5 2
Wavelength in period units Wavelength in period units
a b

FIGURE 7. Magnetic fields in the test point, Plexiglass case. a) incident wave
direction is downward, b) incident wave direction is upward

The Figure 8 presents results related to Taconic CER-10
material. This material has the highest dielectric permittivity
between considered materials. As it was expected it has local
extremum at 2.054 of wavelength, which is greater than that E
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Glass has. The Figures 8 a) and b) show relatively stable
location of “resonance frequency”. The quality factor looks
pitiful. The Figure 8a) shows some complexity, while The
Figure 8b) shows a local minimum of the magnetic field. The
shielding effect of the Taconic CER-10 DFSS is strongly
exhibited.

TACONIC CER-10

-3 -3
20 ><10‘ . . . 20 x10
a=70°
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a=110°
16 16 1
14 14
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6 ‘ 1 6 1 [ 1
W | -
MY \g - |

1 1.5 2 25 3 1 1.5 2 25 3
Wavelength in period units Wavelength in period units
a b

FIGURE 8. Magnetic fields in the test point, Taconic CER-10 case. a) incident
wave downward, b) incident wave upward

The structure demonstrates resonance at the highest
wavelength among the other DFSS. Its potential for
application in the regulation of plasma density is promising. It
is important to see how looks the resonance field distribution
at 2.054 wavelength.

1.67€-002 4.09e-003

1.256-002 3.66e-003
3.24e-003

8.33e-003

4176-003 2.81e-003

-3.43e-006 2.39e-003

a b

FIGURE 9. The Magnetic field distribution at 2.054 wavelength, incident wave
downward (a) and upward (b), Taconic CER-10, a=85° case

The Figure 9 shows the magnetic field distribution at a
wavelength of 2.054. The pulse-shaped profile has a=85°.
The material is Taconic CER-10, and the plane wave is
incident in the downward direction. The magnetic field
distribution exhibits a distinct resonant field shape, which
stands out against the plane wave background. Sizes of the
field distribution are presented also unitless in period’s units.

The last material considered for the DFSSs is Teflon. Its
dielectric permittivity is the lowest among the considered
materials. As shown in the Figure 10 a) and b), the highest
wavelength resonance occurs at 1.19. This resonance is very
strong and stable for all cases, similar to the Plexiglass cases.
The resonance curve exhibits a good quality factor.
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In comparison, the dielectric permittivity of Plexiglass is
higher than that of Teflon, resulting in a better resonance
quality factor. On the other hand, higher dielectric
permittivity in the cases of E-Glass and Taconic CER-10 are
accompanied by poorer quality factors.

TEFLON

3 3
20 x10 20 x10
a=70°
18 18 a=95°
a=110°
16 16
14 14
12 12
£ £
<10 <10
T T
8 8
6 6
4r 4r {
Il .
, ,\ J ) w‘ |
L 7 L
0

1 1.5 2 1 1.5 2
Wavelength in period units Wavelength in period units
a b

FIGURE 10. Magnetic fields in the test point, Taconic CER-10 case. a)
incident wave downward, b) incident wave upward

The different incidence angles should be analyzed in a
separate investigation. Here, only cases with small incidence
angles are demonstrated. As the Figures 11 and 12 show, at
large wavelengths, there are no significant differences in the
obtained field configurations compared to normal incidence.
However, the differences become apparent at shorter
wavelengths.

%107

9t

H, A/m
o

L

! |
0.5 1 1.5 2 25 3
Wavelength in period units

FIGURE 11. Magnetic fields in the test point, for E-Glass and different
incidence angles 6.

73



JOURNAL
¢ ORG

AE

D. Kakulia et al.

H, A/Im
o

0.5 1 1.5 2 25 3
Wavelength in period units

FIGURE 12. Magnetic fields in the test point for Taconic CER-10 and different
incidence angles 6.

V. CONCLUSION

This study formulated the magnetic current’s periodic Green
function and applied it within the MAS framework to solve
problems involving p-polarized plane wave incidence on
Dielectric Frequency Selective Surfaces (DFSS) and
investigated the potential of Dielectric Frequency Selective
Surfaces (DFSS) as concentrators of alternating magnetic
fields for plasma density control applications. By employing
the MAS, DFSSs composed of various dielectric materials,
including E-Glass, Plexiglass, Taconic CER-10, and Teflon
were analyzed. Numerical simulations revealed several key
insights.

It is found that the dielectric permittivity of the material
significantly affects the resonance properties and quality
factors of DFSSs. Materials with lower dielectric
permittivity, such as Plexiglass and Teflon, exhibited higher
resonance quality factors. In contrast, higher permittivity
materials like E-Glass and Taconic CER-10 showed poorer
quality factors.

The geometric configuration of DFSSs plays a crucial role
in their performance. The considered profile with periodic
“humps” having varied slope angles demonstrated that
resonance frequencies remained relatively stable despite
geometric variations, which is essential for practical
fabrication.

The study highlighted specific resonance frequencies for
different materials, with the highest wavelength resonances
occurring at 2.054 for Taconic CER-10 and 1.19 for Teflon.
These resonances are strong and stable, making DFSSs
suitable for applications requiring precise control of
magnetic fields and plasma density. The ability of DFSSs to
generate strong magnetic fields at resonance frequencies
suggests their potential use in enhancing plasma density for
industrial processes like thin film deposition.

For small incidence angles in the large wavelength range,
the field configuration exhibits smooth behavior. At short
wavelengths, an extremely high number of resonances is
observed.

Overall, the results of this study demonstrate the
feasibility and effectiveness of DFSSs in controlling
magnetic fields and plasma density. The insights gained
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regarding material selection and geometric design provide a
foundation for further research and development of advanced
dielectric resonators for various industrial applications
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