Interaction of Bessel Light Beams with Epsilon-near-zero Metamaterials
Main Article Content
Abstract
The article explores possibilities and conditions of generation of a new type of diffraction-free needle-like field Bessel plasmon polaritons (BPPs) with super narrow cone angle in an epsilon-near-zero metamaterial, surrounded by semi-infinite dielectric media. Correct analytical expressions are obtained and analyzed in detail for the electric and magnetic fields of BPPs formed inside and outside the metamateral slab.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85: 3966-3969, 2000.
N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction- limited optical imaging with a silver superlens, Science. 308: 534-537, 2005.
J.B. Pendry, D. Schurig, D.R. Smith, Controlling Electromagnetic Fields, Science 312: 1780-1782, 2006.
D.R. Smith, P. Kolinko, D. Schurig, Negative refraction in indefinite media, J. Opt. Soc. Am. B21: 1032-1043, 2004.
P.A. Belov, Y. Hao, Subwavelength imaging at optical frequences using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime, Phys. Rev. B73: 113110, 2006.
V. P. Drachev, V. A. Podolsky, A.V.Kildishev, Hyperbolic metamaterials: new physics behind a classical problem, Opt. Express. 21: 15048-15064, 2013.
A. J. Hoffman, L. Alekseyev, C.Gmachl, Negative refraction in semiconductor metamaterials, Nature Materials 6: 946-950, 2007.
G. Castaldi, S. Savoia, V. Galdi, Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs, Phys. Rev. B86: 115123, 2012.
B. Wang, K.M. Huang, Shaping the radiation pattern with Mu and epsilon-near-zero metamaterials, PIER. 106:107-119, 2010.
J. Gao et al, Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers, Appl. Phys. Lett. 103: 051111, 2013.
J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory, J.Opt.Soc.Am. A4: 651-654, 1987.
J. Durnin, J.J. Muceli, J.H. Eberly, Diffraction-free beams, Phys. Rev. Lett. 58: 1499-1501, 1987.
P. Sprangle, B. Hafizi, Comment on nondiffracting beams, Phys. Rev. Lett.: 66: 837-839, 1991.
Z. Bouchal, J. Wagner, M. Chlup, Self-reconstruction of a distorted nondiffracting beam, Opt. Commun. 151: 207-211, 1998.
Y. Lin et al, Experimental investigation of Bessel beam characteristics, Appl. Opt., 31: 2708-2713, 1992.
D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light, Contemp. Phys. 46: 15-28, 2005.
J. Turunen, A.T. Friberg, Self-imaging and propagation-invariance in electromagnetic fields, Pure Appl. Opt. 2: 51-60, 1993.
R. Horak, Z. Bouchal, J. Bajer, Nondiffracting stationary electromagnetic field, Opt. Commun. 133: 315-327, 1997.
G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, P. Zemanek, Particle dynamics in a Bessel beam, Opt. Express. 15: 13 972- 13 987, 2007.
V. Garcés-Chavéz, D. Roskey, M.D. Summers, H. Melville, D. McGloin, E.M. Wright, K. Dholakia, Optical levitation in a Bessel light beam, Appl. Phys. Lett. 8: 4001-4003, 2004.
L. Paterson, E. Papagiakoumou, G. Milne, V.Garcés-Chavéz, T. Briscoe, W. Sibbett, L. Dholakia, A. Riches, Passive optical separation with a 'nondiffracting' light beam, J. Biomed. Opt. 12: 054017, 2007.
T. Cižmár, V. Garcés – Chávez, K. Dholakia, P. Zemánek, Optical conveyor belt for delivery of submicron objects, Appl. Phys. Lett. 86: 101-1-174 – 101-3, 2005.
S. Rushin, A. Leizer, Evanescent Bessel beams, J. Opt. Soc. Am.A15: 1139-1143, 1998.
S. N. Kurilkina, V.N. Belyi, N.S. Kazak, Features of evanescent Bessel light beams formed in structures containing a dielectric layer, Opt. Comm. 283: 3860-3868, 2010.
Q.Zhan, Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam, Opt.Lett. 31: 1726-1728, 2006.
Muhanna K Al-Muhanna, S. N. Kurilkina, V. N. Belyi, N. S. Kazak, Energy flow patterns in an optical field formed by a superposition of evanescent Bessel light beams, J.Opt. 13: 105703, 2011.
H.Kano, D. Nomura, H. Shibuya, Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam, Appl. Opt. .43: 2409-2411, 2004.
T. Grosjean, D. Courjon, D. Van Labeke, Bessel beams as virtual tips for near-field optics, J. Microscopy. 210: 319-323, 2003.
H.Kano, D. Nomura, H. Shibuya, Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam, Appl. Opt. 43: 2409-2411, 2004.
J. Zapata-Rodriguez et al, Nondiffracting Bessel plasmons, Opt. Express. 19: 19572-19581, 2011.
W. Cai, V. Shalaev, Optical Metamaterials. Fundamentals and Applications, Springer, New York, 2010.
R.Atkinson et al, Anisotropic optical properties of arrays of gold nanorods embedded in alumina, Phys. Rev. B73: 235402-1 – 235402-8, 2006.
G.N. Watson, A Threatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1966.
G. B. Arfken, H.J.Weber, F.E.Harris, Mathematical methods for physicists, Academic Press, Orlando FL., 1985.
S. N. Kurilkina, V. N. Belyi, N. S. Kazak, Features of vortex Bessel plasmons generated in metal–dielectric layered structures, J. Opt. 15: 044017, 2013.