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ABSTRACT In this paper, we propose a new design strategy for metal mesh filters (MMFs) based on the 
analysis of the spatial symmetry of bound states in the continuum (BICs), and manipulation and control of 
their characteristics using resonances that originate from the BICs when the structure of MMF is spatially 
perturbed. The design of a dual-band polarization-insensitive terahertz bandpass filter with wide upper 
stopband characteristics using a single conducting layer patterned with rectangular holes is presented. The 
transmission response of the MMF with two poles is obtained to realize dual-band characteristics and three 
zeros to suppress the stopband. The proposed design has achieved broadband transmission characteristics 
for both TE and TM polarizations, with center frequencies at 0.516THz and 0.734THz, 3dB bandwidths of 
25% and 17%, respectively, and upper stopband from 0.887THz to 1.6THz with over 10dB suppression. 

INDEX TERMS Bound states in the continuum, dual-band, filters, terahertz. 

I. INTRODUCTION 
APIDLY expanding terahertz (THz) technology has 
various potential applications in medicine, space, 

security, communications, and environmental sensing [1–
4]. Thus, research into active and passive THz devices with 
specific characteristics, such as multiband operation, high 
sensitivity, wideband operation, etc., is particularly 
important for THz technology applications [5]. There is an 
increasing demand for THz functional devices such as 
waveguides, polarizers, modulators, antennas, sensors, and 
bandstop/bandpass filters [6–11].  

THz bandpass filters are one of the important 
components used to transmit desired frequencies with better 
selectivity and reject others. They are usually composed of 
periodically arranged unit cells, which are either conducting 
patches printed on a dielectric substrate or slots/apertures 
etched out of a conducting plate [12].  

To meet required characteristics such as single- or multi-
band, wide-band or high Q selectivity, sharp rejection, etc. 
various designs have been proposed [12-18]. They can be 
grouped into several types. The first type is filters based on 
planar structures composed of metal patches [13,14], metal 
apertures [15-20] or complimentary elements patterned on a 
dielectric substrate [21]. Depending on the design 
specifications, single or multilayer structures with elements 
of various shapes (crossed dipoles, circular or rectangular 
rings, split rings, etc.) are used. Better frequency selectivity 
for structures of this type can usually be obtained with a 
multilayer design, which is more complicated and can be 
bulky. The presence of dielectrics in such structure 
additionally leads to non-radiative loss. Another type of 

filters is based on structures with 3D elements [22]. They 
can have the same frequency response as multilayer filters 
of the previous type, but are relatively complex to 
manufacture, compared to traditional cascades of planar 
metal elements and dielectric layers. 

 The third type is metal mesh filters, which are 
conductive surfaces periodically patterned with holes [23]. 
They are compact, can exhibit excellent transmission 
characteristics, and have the advantage of a simple 
manufacturing process and better frequency tuning 
possibilities compared to other types of filters. This type of 
bandpass filters exhibits high transmission at the central 
frequency, adjustable bandwidth, and good rejection of 
sideband frequencies [23]. For ease of manufacture, mesh 
filters are usually patterned with elements of a simple shape 
such as rectangular [18-20], circular [15,17], or crossed 
holes [23].  

To obtain a dual band response, one or a combination of 
the following techniques is applied when designing MMFs: 
layered or stacked structures, perturbation of a single-layer 
structure, or unit cells with multi-resonant elements [16-
19]. For single layer structures, resonant responses are 
caused by aperture resonances [24]. Two or more holes of 
different sizes located in a unit cell form independent 
resonances with very weak coupling between adjacent ones, 
and frequency selectivity characteristics can be achieved in 
both the lower and upper bands by tuning the sizes 
adjusting holes. However, by manipulating the electrical 
lengths of the elements, one can easily control only the 
resonant frequencies, but not the bandwidths or the level of 
out-of-band rejection. For multilayer structures, the 
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resonant responses are caused by the Fabry-Perot 
resonances, which depend on the thickness of the 
structures. As a result, the control  of their characteristics is 
determined by the peculiarities of the resonances. In this 
case, selectivity and stopband suppression can be better 
than for single-layer structures. However, the 
corresponding designs can be more complex and bulky, 
which can result in additional loss.  

In this paper, we propose a new strategy to design dual-
band bandpass MMFs based on the analysis of spatial 
symmetry of bound states in the continuum(BICs) and 
manipulation and control of the resonances that originate 
from the BICs when the structure of MMF is spatially 
perturbed. 

BICs are infinite-lifetime eigenmodes that coexist with a 
continuous spectrum of radiating waves but remain 
completely confined without any radiation. Its existence 
was first predicted by von Neumann and Wigner in 1929 
[25]. Recently, extensive studies have been conducted on 
BICs in various periodic structures, motivated by their 
potential applications in resonant enhancement, lasing, and 
filtering [26-29].  

Most studies have focused on high-Q resonances in the 
structures. Meanwhile, the BICs theory can be successfully 
applied to realize resonances with different Q-factors. If 
one understands spatial distributions of the BICs in a 
periodic cell, it allows the manipulation of poles and zeros 
by adapting the cell composition, thereby improving the 
frequency selectivity of the passband and effectively 
suppressing stopbands. By preserving a certain type of 
supercell symmetry, it is possible to control the 
transformation of the required BICs into QBICs (quasi-
bound states in the continuum) while keeping the others 
symmetry-protected. In this case, lattice resonances 
determine the resonant response. Strong coupling effects 
between elements of the supercell are observed, and 
resonant frequencies no longer depend on the electrical 
lengths of the elements. Meanwhile, there are more degrees 
of freedom to control resonances. Manipulating with the 
element coupling strength, one can simultaneously control 
resonant frequencies and bandwidths. Moreover, because of 
non-orthogonality of the BICs, the incident wave can 
couple not only the lower order BICs forming passband 
response but also to the higher order ones suppressing 
stopband with zeros due to coupling effects between them. 

II. THE PROBLEM FORMULATION AND SOLUTION 
METHOD 
To  design the filter, we consider a metasurface consisting 
of a thin conductive metal screen of thickness 

periodically patterned with holes arranged in unit cells 
with periods a and b along the x- and y-axis, respectively 
(Figure 1). To solve the scattering problem, the metal 
elements are modeled as infinitesimally thin with 
impedance , 

where  and  are the permittivity and permeability of 
free space, respectively,  is the 
relative permittivity of the metal, and  is the 
conductivity of the metal. The most efficient method for 
solving the plane wave scattering problem on the structure 
can be obtained by reducing the computation domain to the 
holes in the unit cell.  

 
(a)                                             (b) 

FIGURE 1.  Proposed THz MMF. (a) Geometry of the periodic MMF cell. (b) 
Perspective view of the proposed MMF. 

 
The electromagnetic fields and , above 

and below the metasurface, respectively, must satisfy the 
Floquet theorem so that they can be expanded into a 
complete set of Floquet modal basis functions with 
unknown complex amplitudes.  

The  transverse electromagnetic fields with respect to the 
screen plane  can be presented as  follows: 

        (1) 

            (2) 

where ,  are the incident amplitudes, and 

,  are the unknown scattered  ones. Each term  

in the series (1)  defines the transverse electric field of TE 
mode  or TM mode  :  
 

,     (3) 

 
where  denotes the 2-D gradient operating on the 

coordinates of the transverse plane  , 
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,  are the propagation 

constants and mode impedances; , 

  are the 

transverse wave numbers;  and  are wave number and 
impedance of  free space; is the incident 
wave propagation vector. 

To solve the problem, it is necessary to match the electric 
and magnetic fields on both sides of the boundaries 

, satisfying the following boundary 
conditions: 

,                                 (4) 

,                               (5) 

             (6) 

where  and  correspond to the surfaces of holes 
and metal, respectively. 

Applying condition (4) of the electric field continuity 
across  and taking into account the orthogonality of the 

 set, the equations relating the mode amplitudes in half-
spaces above and below the screen with electric field 

 on the boundary are obtained 

,                         (7) 

where the symbol * denotes the complex conjugate. 
Matching the magnetic fields according to conditions (5), 

(6) and substituting (7) to exclude , , the equations 

relating  on  and  with amplitudes of the 
incident field are obtained 

 (8) 

 (9) 

Equations (7)-(9), which express unknown amplitudes 
,  in terms of  on the boundary  can be 

simplified by excluding  on the . Therefore, 

,  can be expressed in terms of  on the 

 only. For this sake, the relation between  and 
 can be obtained from (8) 

    (10) 

followed by exclusion  using (9). 
The result is the Fredholm integral equation of the first 

kind with respect to , which is defined over the cross 

sections of the holes  

               (11) 

Unknown amplitudes of the modes scattered on the 
screen can be obtained using the following formulas 

           (12) 

III. PROPOSED FILTER DESIGN 
The designed MMF structure is a periodic array of 
compound supercells with rectangular holes in conducting 
metal of thickness h. It contains two sets ( ) of four 
identical rectangular holes of length  and width  
located in such a way that the supercell has a four-fold 
rotational symmetry (it is spatially invariant in the -
plane for rotations through angles ). 
The hole positions depend on two parameters  and , 
which are the distances of the holes from the supercell 
boundaries. 

The final geometry dimensions are given as follows: 
   
   and 

 The conductive metal is aluminum with 
frequency independent conductivity  

A plane wave scattering problem, reduced to the 
equations (11) and (12), is solved using the full-wave 
moment method. Figure 2 shows the simulated transmission 
and reflection values for the MMF. A dual-band 
transmission response is observed with resonances at 
0.516THz and 0.734THz. For the first band, the maximum 
transmission is 99% with the 3dB relative bandwidth of 
25%, and for the second band, the maximum transmission 
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is 98% with the 3dB relative bandwidth of 17%. The upper 
stopband has three zeros and suppression over 10dB from 
0.887THz to 1.6THz. 

 
FIGURE 2.  Simulated magnitudes of the MMF transmission S10 and 
reflection S00 responses at normal incidence. Two transmission resonances 
are found at 0.516THz, and 0.734THz. The inset shows the periodic MMF cell 
structure.  

 
The resonances in the frequency response are caused by 

the excitation of four eigenmodes belonging to two 
orthogonal sets with the eigenfrequencies 

 and . 
The eigenmodes of each set can only couple to TE or TM 
plane wave, resulting in two resonances in the frequency 
response when one of the waves is incident on the MMF. 
The electric and magnetic fields of eigenmodes for these 
two sets are completely identical to each other, but have 
orthogonal distributions along the x-axis and the y-axis.  

 
                           (a)                                            (b)                 

FIGURE 3.  Electric field distribution at the resonant frequencies in the case 
of TE plane wave incidence. The cones designate a value and direction of the 
electric field vectors. (a) 0.516THz. (b) 0.734THz. 

 
Figure 3 shows the electric field distribution at the 

resonant frequencies 0.516THz and 0.734THz. The 
resonance at 0.734THz is an aperture resonance (Figure 
3(b)). The electric field is mainly concentrated in smaller 
holes, and electric coupling between adjacent holes is very 
weak. On the contrary, for the electric field at 0.516THz, 
strong coupling between adjacent holes is observed, while 

the electric field is concentrated not inside the holes, but 
between them (Figure 3(a)). It is a lattice resonance [30,31]. 

The resonance is due to coupling incident wave with the 
eigenmode, electric field of which is formed not by 
individual elements of the cell, but by the entire cell, and it 
is determined by spatial symmetry of the cell. Such 
resonances appear when the BIC is tuned to QBIC due to 
perturbation in supercell structure.   

IV. FILTER DESIGN STRATEGY AND DISCUSSION 

In this section, we consider the main stages of filter 
synthesis. The synthesis procedure is based not on 
analyzing the properties of individual elements forming a 
periodic supercell, as is usually done, but on considering 
the entire supercell as a scatterer that forms the scattering 
characteristics due to its spatial symmetry. To obtain the 
required characteristics, eigenmodes of the metasurface are 
considered, and their contribution to the scattered field is 
analyzed when spatial perturbations are introduced into the 
metasurface supercell structure.   

As is known, eigenmodes, which are nontrivial solutions 
of source-free Maxwell's equations, contribute to the 
scattered field when the structure is excited by an external 
source, leading to appearance of resonances. However, 
there are also eigenmodes that do not contribute to the 
scattered field due to various protection mechanisms such 
as spatial symmetry, accidental parameter tuning, etc. 
These eigenmodes are known as BICs. They are currently 
being actively investigated for narrowband device 
applications. However, the theory of these eigenmodes can 
be effectively applied to the synthesis of various filters. 

We start with a periodic structure arranged as an array of 
supercells containing four rectangular holes equidistantly 
distributed along the x-axis (Figure 4(a)). The periodic 
supercell has mirror symmetry planes along the x-axis, 
passing through the centers of the holes and the middle 
planes between them, and, as follows from the theory of 
symmetry, such a structure has eigenmodes with symmetric 
(magnetic walls) and antisymmetric (electric walls) 
distributions of electromagnetic fields relative to the mirror 
symmetry planes [32]. In the case of excitation of the 
structure by a normally incident TM plane wave, 
eigenmodes with antisymmetric distributions inside the 
supercell can only be coupled to the incident wave and 
contribute to the scattering field.  

In the frequency band where only one wave propagates, 
an eigenmode with electric walls in all mirror symmetry 
planes can only be coupled to the incident field, of resulting 
in a frequency response with a single transmission 
resonance. Other eigenmodes are symmetry protected BICs, 
which can be excited only if perturbations are introduced 
into the supercell structure. Exciting the BICs can enable 
additional transmission resonances, improve passband 
frequency selectivity, and control suppression in stopband. 
For this case, there are six BICs [32], which can be 

THzif 0.069- 548.01 ×= THzif 7960.0-7301.02 ×=
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transformed into QBICs by various perturbations in the 
supercell.  

 

(a)                                              (b) 

 

(c)                                              (d) 

FIGURE 4.  Schematic illustration of the electric field distribution of the 
eigenmode when various perturbations are introduced into the supercell. The 
symmetrical distribution of the electric vectors projected onto the xy-plane is 
shown by the arrows. Two equally sized green and red arrows designate 
magnetic and electric walls, respectively.  

 
For our design, we consider one of them. A sketch of the 

electric field distribution of which is shown in Figure 4(a). 
The electric field of the BIC has three electric walls in 
planes 1, 3 and 5 (Figure 4(a)), and two magnetic walls in 
planes 2 and 4. The presence of magnetic walls in the 
electric field distribution of the BIC prevents its coupling to 
the incident TM plane wave. Thus, in order to excite the 
eigenmode, it is necessary to introduce perturbations into 
the cell structure that break the mirror symmetry in the 
planes 2 and 4 and thereby destroy the magnetic walls in 
the eigenmode electric field distribution. In this case, the 
symmetry must be preserved in planes 1, 3 and 5 to avoid 
excitation of other eigenmodes, that lead to undesired 
resonances in both passband and stopband. This can be 
achieved in several ways: by symmetrically shifting the 
holes relative to the supercell middle plane (Figure 4(b)), 
by changing the size of the internal holes inside the 
supercell (Figure 4(c)), and by both symmetrical shifting 
the holes and changing the size of the internal holes (Figure 
4(d)). 

To analyze dependence of the transmission response for 
each case, two parameters  and  are introduced 
describing perturbations inside the periodic supercell. The 
parameter  describes perturbations of the position of the 
holes inside the supercell  and 

, and the parameter  
describes perturbation of the sizes of the holes. The case 

 and  corresponds to an unperturbed supercell 
(Figure 4(a)). 

Figure 5 shows the curves describing the movement of 
the eigenfrequencies  and  on the first sheet of the 
Riemann surface with changing supercell parameters  and 

 The corresponding eigenmodes provide a dual-band 
response for the MMF. The values of  and  
corresponding to eigenfrequency values are marked on the 
curves. 

When perturbation is introduced in a supercell by 
changing the position of the holes (the parameter  takes 
values from  to , ), the BIC 
(red curve in Figure 5(a)) tuned to the QBIC, and its 
eigenfrequency  starts moving in the complex plane from 
the real value  to the value 

. The imaginary part of  is 
weakly dependent on changes in , while the real part 
increases relatively quickly. The eigenfrequency  
changes from  to 

. Thus the motions of  and  are 
opposite to each other in the complex plane.  

 
(a) 

 
(b) 

FIGURE 5.  The motions of eigenfrequencies on the first sheet of the 
Riemann surface with changing supercell parameters s and d: (a) 
eigenfrequency f1; (b) eigenfrequency f2. 

 
The frequency responses of the MMF corresponding to 
different values of  are shown in Figure 6 in the case of 
excitation by an incident TM-plane wave. As can be seen, 
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for any perturbed case ( ), there are two resonances in 
the frequency response, in contrast to the unperturbed case 
( ), where only a single resonance is observed. 
However, the first resonance caused by the QBIC 
contribution to the scattered field in the case of perturbed 
geometry, is weakly expressed due to loss and the fact that 
the imaginary part of the QBIC eigenfrequency  is quite 
small. Its center frequency also cannot be controlled 
efficiently. Meanwhile, perturbations lead to the appearance 
of two transmission zeros and a significant suppression of 
the transmitted field in the upper stopband compared to the 
unperturbed case. As for the other resonance, observed for 
both perturbed and unperturbed cases, its center frequency 
and quality factor can be manipulated. A more perturbed 
geometry results in a lower resonant frequency and a higher 
quality factor for the resonance.  

 

FIGURE 6.  Dependence of the transmission response  on the  symmetrical 
shifts of holes inside the supercell. The inset shows the transformation of the 
supercell geometry from the unperturbed case with uniformly distributed holes 
to the case with two paired holes symmetrically located relative to the center 
plane of the supercell. 
 

When supercell perturbations occur due to a change in 
the lengths of holes (the parameter  takes values from 

 to , ), the eigenfrequency  
(green curve in Figure 5(a)) moves in the complex plane 
from the real value  to the value 

, while the value of eigenfrequency  
is changed from  to 

 In contrast to the previous type of 
perturbation, the imaginary parts of the eigenfrequencies 
exhibit opposite behavior here. As  increases, the 
imaginary part of  decreases, while the imaginary part of 

 increases.  
The frequency responses of the MMF corresponding to 

different values of  are shown in Figure 7. As in the 
previous case, there are two resonances in the frequency 
response when perturbations are introduced in the cell 
geometry. In this case, it is possible to manipulate the 
quality factors of both resonances, but it is impossible to 

obtain a frequency response with two resonances having 
commensurate quality factors. One of the resonances 
quickly moves to higher frequencies while its quality factor 
increases. 

 

FIGURE 7.  Dependence of the transmission response e on the change in 
the length of hole. The inset shows the transformation of the supercell 
geometry from the unperturbed case to the case with two pairs of uniformly 
distributed holes of different lengths. 

 
It should also be noted that in this case, transmission 

suppression is not observed in the upper stopband and the 
frequency response differs little for all values from  
to .  

Considering the opposite behavior of the real and 
imaginary parts of the eigenfrequencies  and  in the 
two cases, we can conclude that their values can be 
controlled by simultaneously changing the positions 

 and  lengths  of the holes. 
The motion of the eigenfrequencies in the complex plane, 

with parameter  varying from  to  and 
the parameter  fixed at , is shown in Figure 
5 by the purple curves. As can be seen, both the imaginary 
and real parts of the eigenfrequencies can be effectively 
controlled to achieve the necessary positions in the complex 
plane, resulting in the required transmission characteristics. 
The frequency responses for various values of d in this case 
are shown in Figure 8. The two resonances observed in the 
figure can be controlled to obtain the desired 
characteristics. Changing lengths of holes leads to a 
decrease in the quality factor of the first resonance and an 
increase in the quality factor of the second resonance. The 
second resonance slowly moves to higher frequencies. In 
this way, the distance between the center resonant 
frequencies, as well as the quality factors, can be controlled 
to obtain the required bandwidths. 

Additionally, the appearance of transmission zeros in the 
upper frequency range is observed, which is associated with 
the excitation of higher eigenmodes with eigen frequencies 
in this range and their coupling to the incident wave. 
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FIGURE 8.  Dependence of the transmission response  on changes in the 
lengths of symmetrically shifted holes in the supercell. The inset shows the 
transformation of the supercell geometry from the case with two pair of 
identical holes symmetrically located relative to the supercell center plane to 
the case with two pairs of holes of different lengths. 

 
As can be seen in the inset of Figure 8, the supercell can 

be easily modified to achieve a polarization-independent 
response. To achieve this goal, the supercell must be 
complemented with holes that are orthogonal to those 
shown in the inset. The structure modified in this has two 
orthogonal sets of eigenmodes, which can couple to both 
incident TM and TE waves (Figure 9). In this case, the 
modified supercell has planes of mirror symmetry not only 
along the x-axis and y-axis, but also along the diagonals of 
the supercell. The latter do not influence the transmission 
response in the passband, however, they can introduce 
some changes in the stopband. At the same time, the 
stopband characteristics can be improved by transforming 
the mirror symmetry to  rotational symmetry of the 
supercell. To do this, we introduce the parameter p, which  
changes the distances between the holes along the y-axis 

 and along the x-axis 
.  

The value  corresponds to the case of mirror 
symmetry, and the value  corresponds to rotationally 
symmetrical geometry. In structures with n-fold rotational 
symmetry (for n>2), cross-polarization does not occur in 
the reflected field for the case of normally incident plane 
wave [33], but at the same time, such a transition makes it 
possible to improve the characteristics in the stopband by 
obtaining additional transmission zeros, as one can see in 
Figure 9. 

V. CONCLUSION 
A new strategy for designing metal mesh filters (MMF) is 
proposed, based on the spatial symmetry analysis of bound 
states in the continuum(BICs). It involves manipulating and 
controlling resonances by transforming BICs into the 
resonances by spatial perturbations in the MMF structure. 
The design of a dual-band polarization insensitive terahertz 

bandpass filter with wide upper stopband characteristics 
using a single conducting layer patterned with rectangular 
holes is presented. The transmission response of the MMF 
with two poles is obtained to realize dual-band 
characteristics and three zeros to suppress the stopband.  

 

 

FIGURE 9.  Dependence of the transmission response   on shifts of the 
holes that break the mirror symmetry of the supercell. The inset shows the 
transformation supercell geometry from the mirror symmetrical case to 
rotationally symmetrical case. 
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