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ABSTRACT In this paper, we propose a new design strategy for metal mesh filters (MMFs) based on the
analysis of the spatial symmetry of bound states in the continuum (BICs), and manipulation and control of
their characteristics using resonances that originate from the BICs when the structure of MMF is spatially
perturbed. The design of a dual-band polarization-insensitive terahertz bandpass filter with wide upper
stopband characteristics using a single conducting layer patterned with rectangular holes is presented. The
transmission response of the MMF with two poles is obtained to realize dual-band characteristics and three
zeros to suppress the stopband. The proposed design has achieved broadband transmission characteristics
for both TE and TM polarizations, with center frequencies at 0.516THz and 0.734THz, 3dB bandwidths of
25% and 17%, respectively, and upper stopband from 0.887THz to 1.6THz with over 10dB suppression.

INDEX TERMS Bound states in the continuum, dual-band, filters, terahertz.

I. INTRODUCTION

APIDLY expanding terahertz (THz) technology has

various potential applications in medicine, space,
security, communications, and environmental sensing [1—
4]. Thus, research into active and passive THz devices with
specific characteristics, such as multiband operation, high
sensitivity, wideband operation, etc., is particularly
important for THz technology applications [5]. There is an
increasing demand for THz functional devices such as
waveguides, polarizers, modulators, antennas, sensors, and
bandstop/bandpass filters [6—11].

THz bandpass filters are one of the important
components used to transmit desired frequencies with better
selectivity and reject others. They are usually composed of
periodically arranged unit cells, which are either conducting
patches printed on a dielectric substrate or slots/apertures
etched out of a conducting plate [12].

To meet required characteristics such as single- or multi-
band, wide-band or high Q selectivity, sharp rejection, etc.
various designs have been proposed [12-18]. They can be
grouped into several types. The first type is filters based on
planar structures composed of metal patches [13,14], metal
apertures [15-20] or complimentary elements patterned on a
dielectric substrate [21]. Depending on the design
specifications, single or multilayer structures with elements
of various shapes (crossed dipoles, circular or rectangular
rings, split rings, etc.) are used. Better frequency selectivity
for structures of this type can usually be obtained with a
multilayer design, which is more complicated and can be
bulky. The presence of dielectrics in such structure
additionally leads to non-radiative loss. Another type of
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filters is based on structures with 3D elements [22]. They
can have the same frequency response as multilayer filters
of the previous type, but are relatively complex to
manufacture, compared to traditional cascades of planar
metal elements and dielectric layers.

The third type is metal mesh filters, which are
conductive surfaces periodically patterned with holes [23].
They are compact, can exhibit excellent transmission
characteristics, and have the advantage of a simple
manufacturing process and better frequency tuning
possibilities compared to other types of filters. This type of
bandpass filters exhibits high transmission at the central
frequency, adjustable bandwidth, and good rejection of
sideband frequencies [23]. For ease of manufacture, mesh
filters are usually patterned with elements of a simple shape
such as rectangular [18-20], circular [15,17], or crossed
holes [23].

To obtain a dual band response, one or a combination of
the following techniques is applied when designing MMFs:
layered or stacked structures, perturbation of a single-layer
structure, or unit cells with multi-resonant elements [16-
19]. For single layer structures, resonant responses are
caused by aperture resonances [24]. Two or more holes of
different sizes located in a unit cell form independent
resonances with very weak coupling between adjacent ones,
and frequency selectivity characteristics can be achieved in
both the lower and upper bands by tuning the sizes
adjusting holes. However, by manipulating the electrical
lengths of the elements, one can easily control only the
resonant frequencies, but not the bandwidths or the level of
out-of-band rejection. For multilayer structures, the
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resonant responses are caused by the Fabry-Perot where ¢, and g, are the permittivity and permeability of
resonances, which depend on the .thlckness .of' the free space, respectively, ¢, =1+io, /(2afe,) is the
structures. As a result, the control of their characteristics is . . .
relative permittivity of the metal, and o,, is the

determined by the peculiarities of the resonances. In this
case, selectivity and stopband suppression can be better
than for single-layer structures. =~ However, the
corresponding designs can be more complex and bulky,
which can result in additional loss.

In this paper, we propose a new strategy to design dual-
band bandpass MMFs based on the analysis of spatial
symmetry of bound states in the continuum(BICs) and
manipulation and control of the resonances that originate
from the BICs when the structure of MMF is spatially
perturbed.

BICs are infinite-lifetime eigenmodes that coexist with a
continuous spectrum of radiating waves but remain
completely confined without any radiation. Its existence
was first predicted by von Neumann and Wigner in 1929
[25]. Recently, extensive studies have been conducted on
BICs in various periodic structures, motivated by their
potential applications in resonant enhancement, lasing, and
filtering [26-29].

Most studies have focused on high-Q resonances in the
structures. Meanwhile, the BICs theory can be successfully
applied to realize resonances with different Q-factors. If
one understands spatial distributions of the BICs in a
periodic cell, it allows the manipulation of poles and zeros
by adapting the cell composition, thereby improving the
frequency selectivity of the passband and effectively
suppressing stopbands. By preserving a certain type of
supercell symmetry, it is possible to control the
transformation of the required BICs into QBICs (quasi-
bound states in the continuum) while keeping the others
symmetry-protected. In this case, lattice resonances
determine the resonant response. Strong coupling effects
between elements of the supercell are observed, and
resonant frequencies no longer depend on the electrical
lengths of the elements. Meanwhile, there are more degrees
of freedom to control resonances. Manipulating with the
element coupling strength, one can simultaneously control
resonant frequencies and bandwidths. Moreover, because of
non-orthogonality of the BICs, the incident wave can
couple not only the lower order BICs forming passband
response but also to the higher order ones suppressing
stopband with zeros due to coupling effects between them.

Il. THE PROBLEM FORMULATION AND SOLUTION
METHOD

To design the filter, we consider a metasurface consisting
of a thin conductive metal screen of thickness
h periodically patterned with holes arranged in unit cells
with periods a and b along the x- and y-axis, respectively
(Figure 1). To solve the scattering problem, the metal
elements are modeled as infinitesimally thin with

é: = l\/ :uO/(4‘908m) : clg(h;y‘vgogm,uo ) s

impedance
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conductivity of the metal. The most efficient method for
solving the plane wave scattering problem on the structure
can be obtained by reducing the computation domain to the
holes in the unit cell.

dx, : ’/ h
(a) (b)

FIGURE 1. Proposed THz MMF. (a) Geometry of the periodic MMF cell. (b)
Perspective view of the proposed MMF.

The electromagnetic fields (£,,H,) and (£,,H;), above
and below the metasurface, respectively, must satisfy the
Floquet theorem so that they can be expanded into a
complete set of Floquet modal basis functions with
unknown complex amplitudes.

The transverse electromagnetic fields with respect to the
screen plane S = {17 z= 0} can be presented as follows:

o0

B = (45,7 + 47 ") e, (1)

p=—0

xXe

- iy,z - —iy,z z
Hy ;= Y (4] €7 =45 o7 ) =L 2)
p=—0 VW

where 4 I A]J: p are the incident amplitudes, and

v -
4y, >4, are the unknown scattered ones. Each term e,

in the series (1) defines the transverse electric field of TE
(e) .

)] —
mode ¢, =e¢,, or TMmode ¢, =¢,,, :

iky yx+ik, ,y ik mx+ik, ,y

ik
e(e) :V,e e(h) _ —szte o

mn — T > m,n 3
e T e da

where V, denotes the 2-D gradient operating on the

coordinates of the transverse plane xOy; 7, = ,lkz —kﬁ ,
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J— + — - e =
. m P
constants and mode impedances; &, , = k)(c’) +2mm/a, RO s W (10)

_ 7. . 2
ky,n —ky +27zn/b, kp =k,, k

X,m

+ kyz,n are the
transverse wave numbers; £k and w are wave number and
impedance of free space; k@ =(ki,i),k;f))is the incident
wave propagation vector.

To solve the problem, it is necessary to match the electric

and magnetic fields on both sides of the boundaries
§=8MUs@, satisfying the following boundary

conditions:
(EI,O_EI,1)|S :0: (4)
ZX(H[,O_H[,I)S(") =0’ (5)
1
zx(H,g—H,;) gm = E(Et’o + Et,1)|S(M) (6)

where $ and S correspond to the surfaces of holes
and metal, respectively.

Applying condition (4) of the electric field continuity
across S and taking into account the orthogonality of the
e, set, the equations relating the mode amplitudes in half-
spaces above and below the screen with electric field
M =E,, =E,; onthe boundary S are obtained

Ayt b s, g

where the symbol * denotes the complex conjugate.
Matching the magnetic fields according to conditions (5),

(6) and substituting (7) to exclude A& p» 4, the equations

relating M on S and S with amplitudes of the
incident field are obtained

_Z \/_(A0p+Alp sz_!Me)iSeS(m) ®)
0= Z\/_(AOP-'_AU? szS

Equations (7)-(9), which express unknown amplitudes

A& p>4, in terms of M on the boundary S can be
simplified by excluding M = M,, on the §™ . Therefore,
A p» Ai, can be expressed in terms of M =M, on the

S@ only. For this sake, the relation between M n and
M , can be obtained from (8)
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= W(Ao_’p + AIP)_W%SL(M“ 'e;}’S

followed by exclusion M,, using (9).

The result is the Fredholm integral equation of the first
kind with respect to M, which is defined over the cross

sections of the holes S©

jzw /2+§( AN

st

(n
D) W (v

w, /2 + S(AO’P + A',P )ep g@

(@)

Unknown amplitudes of the modes scattered on the
screen can be obtained using the following formulas

5 - v
AT —Ay,  +———\A,  + A4, |+
0,p — “0,p Wp/2+§( 0,p l,p)

NG .
+wp/;+§sj;)(Ma'ep)dS .
Al Y ﬁ("l&p +A1Tp)+
+—‘/W_p/2 (Ma-e;)dS

w,/2+¢&

4, =

5@

lll. PROPOSED FILTER DESIGN

The designed MMF structure is a periodic array of
compound supercells with rectangular holes in conducting
metal of thickness 4. It contains two sets (i =1,2) of four
identical rectangular holes of length «;, and width &,
located in such a way that the supercell has a four-fold
rotational symmetry (it is spatially invariant in the xy -
plane for rotations through angles a=m/2, n=1273).
The hole positions depend on two parameters dx; and dy;,
which are the distances of the holes from the supercell
boundaries.

The final geometry dimensions are given as follows:
a=b=330um, a, =255um, a, =193 um,
b =b, =18um, dx; =dy, =9um, dx, =dy, =45um, and
h=10um. The conductive metal is aluminum with
frequency independent conductivity o ,, =3.56-10" S /m.

A plane wave scattering problem, reduced to the
equations (11) and (12), is solved using the full-wave
moment method. Figure 2 shows the simulated transmission
and reflection values for the MMF. A dual-band
transmission response is observed with resonances at
0.516THz and 0.734THz. For the first band, the maximum
transmission is 99% with the 3dB relative bandwidth of
25%, and for the second band, the maximum transmission
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is 98% with the 3dB relative bandwidth of 17%. The upper
stopband has three zeros and suppression over 10dB from
0.887THz to 1.6THz.
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FIGURE 2. Simulated magnitudes of the MMF transmission Si and

reflection Soo responses at normal incidence. Two transmission resonances
are found at 0.516 THz, and 0.734 THz. The inset shows the periodic MMF cell
structure.

The resonances in the frequency response are caused by
the excitation of four eigenmodes belonging to two
orthogonal sets with the eigenfrequencies
f1=0.548-i-0.0609THz and f, =0.7301-i-0.0796THz .
The eigenmodes of each set can only couple to TE or TM
plane wave, resulting in two resonances in the frequency
response when one of the waves is incident on the MMF.
The electric and magnetic fields of eigenmodes for these
two sets are completely identical to each other, but have
orthogonal distributions along the x-axis and the y-axis.

[ " Seasaaennsi® . - | - || 1m)ip

(@ (b)

FIGURE 3. Electric field distribution at the resonant frequencies in the case
of TE plane wave incidence. The cones designate a value and direction of the
electric field vectors. (a) 0.516 THz. (b) 0.734THz.

Figure 3 shows the electric field distribution at the
resonant frequencies 0.516THz and 0.734THz. The
resonance at 0.734THz is an aperture resonance (Figure
3(b)). The electric field is mainly concentrated in smaller
holes, and electric coupling between adjacent holes is very
weak. On the contrary, for the electric field at 0.516THz,
strong coupling between adjacent holes is observed, while
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the electric field is concentrated not inside the holes, but
between them (Figure 3(a)). It is a lattice resonance [30,31].

The resonance is due to coupling incident wave with the
eigenmode, electric field of which is formed not by
individual elements of the cell, but by the entire cell, and it
is determined by spatial symmetry of the cell. Such
resonances appear when the BIC is tuned to QBIC due to
perturbation in supercell structure.

IV. FILTER DESIGN STRATEGY AND DISCUSSION

In this section, we consider the main stages of filter
synthesis. The synthesis procedure is based not on
analyzing the properties of individual elements forming a
periodic supercell, as is usually done, but on considering
the entire supercell as a scatterer that forms the scattering
characteristics due to its spatial symmetry. To obtain the
required characteristics, eigenmodes of the metasurface are
considered, and their contribution to the scattered field is
analyzed when spatial perturbations are introduced into the
metasurface supercell structure.

As is known, eigenmodes, which are nontrivial solutions
of source-free Maxwell's equations, contribute to the
scattered field when the structure is excited by an external
source, leading to appearance of resonances. However,
there are also eigenmodes that do not contribute to the
scattered field due to various protection mechanisms such
as spatial symmetry, accidental parameter tuning, etc.
These eigenmodes are known as BICs. They are currently
being actively investigated for narrowband device
applications. However, the theory of these eigenmodes can
be effectively applied to the synthesis of various filters.

We start with a periodic structure arranged as an array of
supercells containing four rectangular holes equidistantly
distributed along the x-axis (Figure 4(a)). The periodic
supercell has mirror symmetry planes along the x-axis,
passing through the centers of the holes and the middle
planes between them, and, as follows from the theory of
symmetry, such a structure has eigenmodes with symmetric
(magnetic walls) and antisymmetric (electric walls)
distributions of electromagnetic fields relative to the mirror
symmetry planes [32]. In the case of excitation of the
structure by a normally incident TM plane wave,
eigenmodes with antisymmetric distributions inside the
supercell can only be coupled to the incident wave and
contribute to the scattering field.

In the frequency band where only one wave propagates,
an eigenmode with electric walls in all mirror symmetry
planes can only be coupled to the incident field, of resulting
in a frequency response with a single transmission
resonance. Other eigenmodes are symmetry protected BICs,
which can be excited only if perturbations are introduced
into the supercell structure. Exciting the BICs can enable
additional transmission resonances, improve passband
frequency selectivity, and control suppression in stopband.
For this case, there are six BICs [32], which can be
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transformed into QBICs by various perturbations in the

supercell.
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FIGURE 4. Schematic illustration of the electric field distribution of the
eigenmode when various perturbations are introduced into the supercell. The
symmetrical distribution of the electric vectors projected onto the xy-plane is
shown by the arrows. Two equally sized green and red arrows designate
magnetic and electric walls, respectively.

For our design, we consider one of them. A sketch of the
electric field distribution of which is shown in Figure 4(a).
The electric field of the BIC has three electric walls in
planes 1, 3 and 5 (Figure 4(a)), and two magnetic walls in
planes 2 and 4. The presence of magnetic walls in the
electric field distribution of the BIC prevents its coupling to
the incident TM plane wave. Thus, in order to excite the
eigenmode, it is necessary to introduce perturbations into
the cell structure that break the mirror symmetry in the
planes 2 and 4 and thereby destroy the magnetic walls in
the eigenmode electric field distribution. In this case, the
symmetry must be preserved in planes 1, 3 and 5 to avoid
excitation of other eigenmodes, that lead to undesired
resonances in both passband and stopband. This can be
achieved in several ways: by symmetrically shifting the
holes relative to the supercell middle plane (Figure 4(b)),
by changing the size of the internal holes inside the
supercell (Figure 4(c)), and by both symmetrical shifting
the holes and changing the size of the internal holes (Figure
4(d)).

To analyze dependence of the transmission response for
each case, two parameters s and d are introduced
describing perturbations inside the periodic supercell. The
parameters describes perturbations of the position of the
holes inside the supercell Ax,=a/8-b/2-s and
Axy, =3a/8—-b,/2-3s, and the parameter d=a,—a,
describes perturbation of the sizes of the holes. The case
s=0 and d =0 corresponds to an unperturbed supercell
(Figure 4(a)).

Figure 5 shows the curves describing the movement of
the eigenfrequencies f; and f, on the first sheet of the

Riemann surface with changing supercell parameters s and
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d. The corresponding eigenmodes provide a dual-band
response for the MMF. The values of s and d
corresponding to eigenfrequency values are marked on the
curves.

When perturbation is introduced in a supercell by
changing the position of the holes (the parameter s takes
values from s=0um to s=2325um, d=0), the BIC
(red curve in Figure 5(a)) tuned to the QBIC, and its
eigenfrequency f; starts moving in the complex plane from
the real value f=0494THz to the wvalue
/1 =0.535-40.002THz . The imaginary part of f; is
weakly dependent on changes in s, while the real part
increases relatively quickly. The eigenfrequency f,
changes from f>,=0.723-i0.56THz to
/> =0.63—-i0.19THz . Thus the motions of f; and f, are
opposite to each other in the complex plane.

$0.0=0  5=16,0=0 -
0.004 §=23.25,d=0
-0.01 4
8-0.02 —-
E -0.03 + position perturbation
size perturbation
-0.04 position and size perturbation
-0.054 §=23.25,d=63
-0.06 +— T T T T T . T .
0.50 0.52 0.54 0.56 0.58
Re (f)
(a)
0.0
-0.14
0 | §=23.25,d=63
-0.2 4 §=23.25,d=18
s=23.25.d
~-0.34 §=0,d=63
~ |
g-0.4
-0.5 -
] s=0,d
-0.6 " .
] position perturbation
-0.7 4 size perturbation
08 | position and size perturbation
- T T T T T T T T T T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90
Re(f)
(b)
FIGURE 5. The motions of eigenfrequencies on the first sheet of the

Riemann surface with changing supercell parameters s and d:. (a)
eigenfrequency fi; (b) eigenfrequency f2.

The frequency responses of the MMF corresponding to
different values of s are shown in Figure 6 in the case of
excitation by an incident TM-plane wave. As can be seen,
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for any perturbed case (s # 0), there are two resonances in
the frequency response, in contrast to the unperturbed case
(s=0), where only a single resonance is observed.
However, the first resonance caused by the QBIC
contribution to the scattered field in the case of perturbed
geometry, is weakly expressed due to loss and the fact that
the imaginary part of the QBIC eigenfrequency f; is quite
small. Its center frequency also cannot be controlled
efficiently. Meanwhile, perturbations lead to the appearance
of two transmission zeros and a significant suppression of
the transmitted field in the upper stopband compared to the
unperturbed case. As for the other resonance, observed for
both perturbed and unperturbed cases, its center frequency
and quality factor can be manipulated. A more perturbed
geometry results in a lower resonant frequency and a higher
quality factor for the resonance.

0
-5
m J
E (]
s -104 '
= J ]
% )
%154 H
£ |
2 1 '
E -20 s_=0um )
1 ----s=7.34um ‘ >
=254 ----5=17.13um ‘ ‘
] s=2325um (Ll . ‘
-30 T T T T T — T T
0.3 0.6 0.9 1.2 1.5
Frequency (THz)
FIGURE 6. Dependence of the transmission response on the symmetrical

shifts of holes inside the supercell. The inset shows the transformation of the
supercell geometry from the unperturbed case with uniformly distributed holes
to the case with two paired holes symmetrically located relative to the center
plane of the supercell.

When supercell perturbations occur due to a change in
the lengths of holes (the parameter & takes values from

d=0 to d=63.75um, s=0), the eigenfrequency f,

(green curve in Figure 5(a)) moves in the complex plane
from the real value f; =0.494THz to the value

f1 =0.56—-i0.2THz , while the value of eigenfrequency f,
f>,=0.723-i0.56THz to
f>=0.89-i0.36THz In contrast to the previous type of

is changed from

perturbation, the imaginary parts of the eigenfrequencies
exhibit opposite behavior here. As d increases, the
imaginary part of f, decreases, while the imaginary part of
f, increases.

The frequency responses of the MMF corresponding to
different values of d are shown in Figure 7. As in the
previous case, there are two resonances in the frequency
response when perturbations are introduced in the cell
geometry. In this case, it is possible to manipulate the
quality factors of both resonances, but it is impossible to
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obtain a frequency response with two resonances having
commensurate quality factors. One of the resonances
quickly moves to higher frequencies while its quality factor
increases.

)

= ---- d=37.4um

g ---- d=87.3um

4 ——d=112um

g

= \‘ |

!

T T T T T
0.9 12 1.5

Frequency (THz)

FIGURE 7. Dependence of the transmission response e on the change in
the length of hole. The inset shows the transformation of the supercell
geometry from the unperturbed case to the case with two pairs of uniformly
distributed holes of different lengths.

It should also be noted that in this case, transmission
suppression is not observed in the upper stopband and the
frequency response differs little for all values from d =0
to d =63.75um .

Considering the opposite behavior of the real and
imaginary parts of the eigenfrequencies f, and f, in the

two cases, we can conclude that their values can be
controlled by simultaneously changing the positions
(s #0) and lengths (d # 0) of the holes.

The motion of the eigenfrequencies in the complex plane,
with parameter d varying from d =0 to d =63.75um and
the parameter s fixed at s =23.25um , is shown in Figure
5 by the purple curves. As can be seen, both the imaginary
and real parts of the eigenfrequencies can be effectively
controlled to achieve the necessary positions in the complex
plane, resulting in the required transmission characteristics.
The frequency responses for various values of d in this case
are shown in Figure 8. The two resonances observed in the
figure can be controlled to obtain the desired
characteristics. Changing lengths of holes leads to a
decrease in the quality factor of the first resonance and an
increase in the quality factor of the second resonance. The
second resonance slowly moves to higher frequencies. In
this way, the distance between the center resonant
frequencies, as well as the quality factors, can be controlled
to obtain the required bandwidths.

Additionally, the appearance of transmission zeros in the
upper frequency range is observed, which is associated with
the excitation of higher eigenmodes with eigen frequencies
in this range and their coupling to the incident wave.
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FIGURE 8. Dependence of the transmission response on changes in the

lengths of symmetrically shifted holes in the supercell. The inset shows the
transformation of the supercell geometry from the case with two pair of
identical holes symmetrically located relative to the supercell center plane to
the case with two pairs of holes of different lengths.

As can be seen in the inset of Figure 8, the supercell can
be easily modified to achieve a polarization-independent
response. To achieve this goal, the supercell must be
complemented with holes that are orthogonal to those
shown in the inset. The structure modified in this has two
orthogonal sets of eigenmodes, which can couple to both
incident TM and TE waves (Figure 9). In this case, the
modified supercell has planes of mirror symmetry not only
along the x-axis and y-axis, but also along the diagonals of
the supercell. The latter do not influence the transmission
response in the passband, however, they can introduce
some changes in the stopband. At the same time, the
stopband characteristics can be improved by transforming
the mirror symmetry to C, rotational symmetry of the
supercell. To do this, we introduce the parameter p, which
changes the distances between the holes along the y-axis
Ay, =(a—a;)/2+p and along the X-axis
Ax;=(a—a;)/2+p.

The value p=0 corresponds to the case of mirror
symmetry, and the value p # 0 corresponds to rotationally
symmetrical geometry. In structures with n-fold rotational
symmetry (for n>2), cross-polarization does not occur in
the reflected field for the case of normally incident plane
wave [33], but at the same time, such a transition makes it
possible to improve the characteristics in the stopband by
obtaining additional transmission zeros, as one can see in
Figure 9.

V. CONCLUSION

A new strategy for designing metal mesh filters (MMF) is
proposed, based on the spatial symmetry analysis of bound
states in the continuum(BICs). It involves manipulating and
controlling resonances by transforming BICs into the
resonances by spatial perturbations in the MMF structure.
The design of a dual-band polarization insensitive terahertz
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bandpass filter with wide upper stopband characteristics
using a single conducting layer patterned with rectangular
holes is presented. The transmission response of the MMF
with two poles is obtained to realize dual-band
characteristics and three zeros to suppress the stopband.

0
-5 ‘
Z-lO E
.2 ]
Z-154
g |
=
E -20 4 p=0pm
---- p=1.8%9um
254 ) ==--p=3.79um
——p=36um
-30 T T T T T T T T T T
0.3 0.6 0.9 1.2 1.5
Frequency (THz)
FIGURE 9. Dependence of the transmission response on shifts of the

holes that break the mirror symmetry of the supercell. The inset shows the
transformation supercell geometry from the mirror symmetrical case to
rotationally symmetrical case.
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