Analytical Circuit-based Model for Low Thickness Tunable Metasurfaces Design
Main Article Content
Abstract
An analytical model of metasurfaces made of a rectangular array deposited on a low thickness (10-150 µm) grounded dielectric layer is presented. The surface impedance and the equivalent circuit are extracted from full wave simulations. Contrary to previous works on higher thickness metasurfaces, the absorption corresponds to the first resonance under the patch. The equivalent circuit is made of a parallel resonant RLC circuit in series with an inductance Ls. The analytical expressions of the RLC components and of the quality factors are established from the study of the influence of the different parameters. The inductance Ls is attributed to the non-metallized part of the mesh. The impedance of the resonant circuit expresses as the product of a proportionality factor, the impedance of a single patch and a periodicity factor. The model is validated on different examples. Specific properties are evidenced like the quasi-independence of the equivalent circuit resistance versus the length of the patch, the total absorption condition and the extension of the model to a two patches metasurfaces. Giving a better understanding of the role of the different parameters, the model is useful in view of new applications development notably electrically driven tunable metasurfaces.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
T. J. Cui, D. Smith, R. Liu, "Metamaterials: Theory, Design, and Applications", Boston, MA, USA Springer, 2010.
F. Capolino, "Theory and Phenomena of Metamaterials", CRC press, 2017.
K.Achouri, C. Caloz, "Electromagnetic Metasurfaces: Theory and Applications", IEEE Press, John Wiley & Sons, 2021.
A. Li, S. Singh, D. Sievenpiper, "Metasurfaces and their applications", Nanophotonics, vol. 7, no. 6, pp. 989-1011, 2018.
S.B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski, "Metasurfaces: from microwaves to visible", Science Direct, Physics Reports, vol. 634, pp. 1-72, 2016.
S. Sun, Q. He, J. Hao, S. Xiao, L. Zhou, "Electromagnetic metasurfaces: physics and applications". Advances in Optics and Photonics, vol. 11, no. 2, June 2019.
T.K. Wu, "Frequency Selective Surface and Grid Array", Wiley, New York, 1995.
B.A. Munk, "Frequency Selective Surface: Theory and Design", Wiley, New York, 2000.
R.S. Anwar, L. Mao, H. Ning, "Frequency selective surfaces: a review", https://www.mdpi.com/2076-3417/8/9/1689.
F. Costa, A. Monorchio, G. Manara, "An overview of equivalent circuit modeling techniques of frequency selective surfaces and Metasurfaces", The Applied Computational Electromagnetics Society Journal (ACES), 960-976, 2014.
D. Sievenpiper, "High impedances electromagnetic ground planes", Ph.D; thesis, Univ. Calif., Los Angeles, CA, 1999.
D. Sievenpiper, L. Zhang, E. Yablonovitch, "High impedances electromagnetic ground planes", IEEE MTT-S Intl. Microwave Symp, Anaheim, CA, 1999.
D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopoulous, E. Yablonovitch, "High-impedance electromagnetic surface with a forbidden frequency band", IEEE Trans. Microwave Theory Technics, vol.47, no. 11, pp. 2059-74, 1999.
C. R. Simovski, A.A. Sochava, "High-impedance surfaces based on self-resonant grids. Analytical modelling and numerical simulations", Progress In Electromagnetics Research, Prog. Electromagn. Res. PIER43, 239-256, 2003.
S.A. Tretyakov, C.R. Simovski, "Dynamic model of artificial reactice impedance surfaces", J. of Electromagn., Waves and Appl., vol. 17, No.1, 131-145, 2003.
S.A. Tretyakov, "Analytical Modeling in Applied Electromagnetics", Artech House, Boston, 2003
C. R. Simovski, P. de Maagt, I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle", IEEE Transactions on Antennas and Propagation, vol. 53, no. 3, pp. 908-914, March 2005, doi: 10.1109/TAP.2004.842598.
O. Luukkonen, C.R. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Räisänen, S.A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches", IEEE Trans. on Antennas and Propagation, vol.56, no.6, pp. 1624-1632, 2008.
M. Hosseini, M. Hakkak, "Characteristics estimation for Jerusalem cross-based artificial magnetic conductors", IEEE Antennas and Wireless Propagation Letters, vol. 7, 58-61, 2008.
O. Luukkonen, F. Costa, C.R. Simovski, A. Monorchio, S.A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations", IEEE Trans. on Antennas and Propagation, vol.57, no.10, pp. 3119-3125, 2009.
A.K. Azad, W.J.M. Kort-Kamp, M. Sykora, N.R. Weisse-Bernstein, T.S. Luk, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, "Metasurface broadband solar absorber", Sci. Rep. 6, 20347 (2016), doi.org/10.1038/srep20347.
F. Costa, A. Monorchio and G. Manara, "Analysis and design of ultra-Thin electromagnetic absorbers comprising resistively loaded high impedance surface", IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 1201-1209,2013, doi: 10.1109/TAP.2012.2227923.
F. Costa, S. Genovesi, A. Monorchio and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers", IEEE Transactions on Antennas and Propagation, vol. 61, no. 3, pp. 1201-1209,2013, doi: 10.1109/TAP.2012.2227923.
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, May 2008.
S. Zahra, L. Ma, W. Wang, et al., Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Frontiers in Physics, 2021, vol. 8, p. 593411.
L. Shao, J. Zhang, I. D. Rukhlenko, W. Zhu. "Electrically reconfigurable microwave metasurfaces" [Invited] J. Chinese Optics Letters, 2022, 20(10: 103601.
P. Yaghmaee, O. Hamza Karabey, B. Bates, C. Fumeaux, R. Jakoby, "Electrically tuned microwave devices using liquid crystal technology", International Journal of Antennas and Propagation, vol. 2013, Article ID 824214, 9 pages, 2013, doi.org/10.1155/2013/824214.
J. Xu, R. Yang, Y. Fan, Q. Fu, F. Zhang, "A review of tunable electromagnetic metamaterial with anisotropic liquid crystals", Frontiers in physics, 9, 2021, 633104, doi: 10.3389/fphy.2021.633104.
N. Tentillier, F. Krasinski, R. Sauleau, B. Splingart, H. Lhermite, Ph. Coquet, "A liquid crystal, tunable, ultra-thin Fabry-Perot resonator in Ka Band", IEEE Antennas and Wireless Propagation Letters, 8, 701-704, 2009.
F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, D. Lippens, "Voltage tunable short wired pair type of metamaterial infiltrated by nematic liquid crystals", Appl. Phys. Lett., 97, 134103, 2010.
F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, D. Lippens, "Electrically controllable fishnet metamaterial based on nematic liquid crystal", Optics Express, 19, 2, pp. 1563-1568, 2011.
F. Costa, A. Monorchio,G. Manara, "An equivalent-circuit modeling of high impedance surfaces employing arbitrarily shaped FSS" In: 2009 International, Conference on Electromagnetics in Advanced Applications. IEEE, 2009. p. 852-855.
A. Sellier, T. V. Teperik, A. de Lustrac, "Resonant circuit model for efficient metamaterial absorber", Optics Express, vol. 21, Issue S6, pp. A997-A1006 (2013), doi.org/10.1364/OE.21.00A997.
J. Sarrazin, A. C. Lepage, X. Begaud, « High-impedance surface design considerations", IEEE Antennas and Propagation Symposium, Jun 2012, Chicago, United States. pp.3569 - 3572, 10.1109/APS.2004.1330117. hal-00983587.
C. Caloz, T. Itoh, "Electromagnetic Metamaterials Transmission Line: Theory and Microwave Applications", John Wiley & Sons, 2005.
R. Rodríguez-Berral, F. Mesa F. Medina, "Analytical multimodal network approach for 2-D arrays of planar patches/apertures embedded in a layered medium,", IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 1969-1984, May 2015, doi: 10.1109/TAP.2015.2406885.
F. Mesa, R. Rodriguez-Berral, F. Medina, "Unlocking complexity using the ECA: The equivalent circuit model as an efficient and physically insightful tool for microwave engineering," , IEEE Microwave Magazine, vol. 19, no. 4, pp. 44-65, June 2018, doi: 10.1109/MMM.2018.2813821.
N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducourneau, D. Lippens, "Radiative quality factor in thin resonant metamaterial absorbers", IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 4, pp. 1764-1772, 2018, doi: 10.1109/TMTT.2017.2784808
D.M. Pozar, "Microwave Engineering", John Wiley & Sons, 4th edition, 2011.
C.A.. Balanis, "Antenna theory: Analysis and Design", John Wiley & Sons, Inc. NY, 1997.
Y. T. Lo, S. W. Lee, "Antenna handbook: theory, applications, and design", Chap. 10, "Microstrip antennas", edited by Y.T Lo, S.W. Lee, Van Nostrand Reinhold New York, 1988.
C.A. Balanis, "Advanced engineering electromagnetics", Chapter 8, "Strip line and Microstrip lines", John Wiley & Sons, 2nd edition, 1989
A.K. Verma, R. Kumar, "A new dispersion model for microstrip line", IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 8, pp. 1183-1187, Aug. 1998, doi: 10.1109/22.704966.
M.N. O. Sadiku, S. M. Musa, S.R. Nelatury, "Comparison of dispersion formulas for microstrip lines", IEEE Southeast Con, 2004. Proceedings., Greensboro, NC, USA, 2004, pp. 378-382, doi: 10.1109/SECON.2004.1287946.
M.V. Schneider, "Microstrip dispersion", Proc. IEEE, 60, no1, 144-146, Jan 1972.
E.O. Hammerstad, "Equations for microstrip circuit design", Proc. Fifth European Microwave Conf., 268-272, September 1975.
J. Hinojosa, "Contribution à la caractérisation électromagnétique de matériaux à partir de lignes plaquées - applications à l'étude de nouveaux matériaux", Ph.D. thesis, Univ. Lille, France, May 1995.