Analytical Circuit-based Model for Low Thickness Tunable Metasurfaces Design

Main Article Content

C. Legrand
P. Ropa
https://orcid.org/0000-0001-9798-7144

Abstract

An analytical model of metasurfaces made of a rectangular array deposited on a low thickness (10-150 µm) grounded dielectric layer is presented. The surface impedance and the equivalent circuit are extracted from full wave simulations. Contrary to previous works on higher thickness metasurfaces, the absorption corresponds to the first resonance under the patch. The equivalent circuit is made of a parallel resonant RLC circuit in series with an inductance Ls. The analytical expressions of the RLC components and of the quality factors are established from the study of the influence of the different parameters. The inductance Ls is attributed to the non-metallized part of the mesh. The impedance of the resonant circuit expresses as the product of a proportionality factor, the impedance of a single patch and a periodicity factor. The model is validated on different examples. Specific properties are evidenced like the quasi-independence of the equivalent circuit resistance versus the length of the patch, the total absorption condition and the extension of the model to a two patches metasurfaces. Giving a better understanding of the role of the different parameters, the model is useful in view of new applications development notably electrically driven tunable metasurfaces.

Downloads

Download data is not yet available.

Article Details

How to Cite
Legrand, C., & Ropa, P. (2024). Analytical Circuit-based Model for Low Thickness Tunable Metasurfaces Design. Advanced Electromagnetics, 13(3), 19–32. https://doi.org/10.7716/aem.v13i3.2371
Section
Research Articles
Author Biography

P. Ropa, Université du Littoral-Côte d'Opale

 

 

References

T. J. Cui, D. Smith, R. Liu, "Metamaterials: Theory, Design, and Applications", Boston, MA, USA Springer, 2010.

View Article

F. Capolino, "Theory and Phenomena of Metamaterials", CRC press, 2017.

View Article

K.Achouri, C. Caloz, "Electromagnetic Metasurfaces: Theory and Applications", IEEE Press, John Wiley & Sons, 2021.

View Article

A. Li, S. Singh, D. Sievenpiper, "Metasurfaces and their applications", Nanophotonics, vol. 7, no. 6, pp. 989-1011, 2018.

View Article

S.B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski, "Metasurfaces: from microwaves to visible", Science Direct, Physics Reports, vol. 634, pp. 1-72, 2016.

View Article

S. Sun, Q. He, J. Hao, S. Xiao, L. Zhou, "Electromagnetic metasurfaces: physics and applications". Advances in Optics and Photonics, vol. 11, no. 2, June 2019.

View Article

T.K. Wu, "Frequency Selective Surface and Grid Array", Wiley, New York, 1995.

B.A. Munk, "Frequency Selective Surface: Theory and Design", Wiley, New York, 2000.

View Article

R.S. Anwar, L. Mao, H. Ning, "Frequency selective surfaces: a review", https://www.mdpi.com/2076-3417/8/9/1689.

View Article

F. Costa, A. Monorchio, G. Manara, "An overview of equivalent circuit modeling techniques of frequency selective surfaces and Metasurfaces", The Applied Computational Electromagnetics Society Journal (ACES), 960-976, 2014.

D. Sievenpiper, "High impedances electromagnetic ground planes", Ph.D; thesis, Univ. Calif., Los Angeles, CA, 1999.

D. Sievenpiper, L. Zhang, E. Yablonovitch, "High impedances electromagnetic ground planes", IEEE MTT-S Intl. Microwave Symp, Anaheim, CA, 1999.

D. Sievenpiper, L. Zhang, R.F.J. Broas, N.G. Alexopoulous, E. Yablonovitch, "High-impedance electromagnetic surface with a forbidden frequency band", IEEE Trans. Microwave Theory Technics, vol.47, no. 11, pp. 2059-74, 1999.

View Article

C. R. Simovski, A.A. Sochava, "High-impedance surfaces based on self-resonant grids. Analytical modelling and numerical simulations", Progress In Electromagnetics Research, Prog. Electromagn. Res. PIER43, 239-256, 2003.

View Article

S.A. Tretyakov, C.R. Simovski, "Dynamic model of artificial reactice impedance surfaces", J. of Electromagn., Waves and Appl., vol. 17, No.1, 131-145, 2003.

View Article

S.A. Tretyakov, "Analytical Modeling in Applied Electromagnetics", Artech House, Boston, 2003

C. R. Simovski, P. de Maagt, I. V. Melchakova, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle", IEEE Transactions on Antennas and Propagation, vol. 53, no. 3, pp. 908-914, March 2005, doi: 10.1109/TAP.2004.842598.

View Article

O. Luukkonen, C.R. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A.V. Räisänen, S.A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches", IEEE Trans. on Antennas and Propagation, vol.56, no.6, pp. 1624-1632, 2008.

View Article

M. Hosseini, M. Hakkak, "Characteristics estimation for Jerusalem cross-based artificial magnetic conductors", IEEE Antennas and Wireless Propagation Letters, vol. 7, 58-61, 2008.

View Article

O. Luukkonen, F. Costa, C.R. Simovski, A. Monorchio, S.A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations", IEEE Trans. on Antennas and Propagation, vol.57, no.10, pp. 3119-3125, 2009.

View Article

A.K. Azad, W.J.M. Kort-Kamp, M. Sykora, N.R. Weisse-Bernstein, T.S. Luk, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, "Metasurface broadband solar absorber", Sci. Rep. 6, 20347 (2016), doi.org/10.1038/srep20347.

View Article

F. Costa, A. Monorchio and G. Manara, "Analysis and design of ultra-Thin electromagnetic absorbers comprising resistively loaded high impedance surface", IEEE Transactions on Antennas and Propagation, vol. 58, no. 3, pp. 1201-1209,2013, doi: 10.1109/TAP.2012.2227923.

View Article

F. Costa, S. Genovesi, A. Monorchio and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers", IEEE Transactions on Antennas and Propagation, vol. 61, no. 3, pp. 1201-1209,2013, doi: 10.1109/TAP.2012.2227923.

View Article

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, May 2008.

View Article

S. Zahra, L. Ma, W. Wang, et al., Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Frontiers in Physics, 2021, vol. 8, p. 593411.

View Article

L. Shao, J. Zhang, I. D. Rukhlenko, W. Zhu. "Electrically reconfigurable microwave metasurfaces" [Invited] J. Chinese Optics Letters, 2022, 20(10: 103601.

View Article

P. Yaghmaee, O. Hamza Karabey, B. Bates, C. Fumeaux, R. Jakoby, "Electrically tuned microwave devices using liquid crystal technology", International Journal of Antennas and Propagation, vol. 2013, Article ID 824214, 9 pages, 2013, doi.org/10.1155/2013/824214.

View Article

J. Xu, R. Yang, Y. Fan, Q. Fu, F. Zhang, "A review of tunable electromagnetic metamaterial with anisotropic liquid crystals", Frontiers in physics, 9, 2021, 633104, doi: 10.3389/fphy.2021.633104.

View Article

N. Tentillier, F. Krasinski, R. Sauleau, B. Splingart, H. Lhermite, Ph. Coquet, "A liquid crystal, tunable, ultra-thin Fabry-Perot resonator in Ka Band", IEEE Antennas and Wireless Propagation Letters, 8, 701-704, 2009.

View Article

F. Zhang, Q. Zhao, W. Zhang, J. Sun, J. Zhou, D. Lippens, "Voltage tunable short wired pair type of metamaterial infiltrated by nematic liquid crystals", Appl. Phys. Lett., 97, 134103, 2010.

View Article

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, D. Lippens, "Electrically controllable fishnet metamaterial based on nematic liquid crystal", Optics Express, 19, 2, pp. 1563-1568, 2011.

View Article

F. Costa, A. Monorchio,G. Manara, "An equivalent-circuit modeling of high impedance surfaces employing arbitrarily shaped FSS" In: 2009 International, Conference on Electromagnetics in Advanced Applications. IEEE, 2009. p. 852-855.

View Article

A. Sellier, T. V. Teperik, A. de Lustrac, "Resonant circuit model for efficient metamaterial absorber", Optics Express, vol. 21, Issue S6, pp. A997-A1006 (2013), doi.org/10.1364/OE.21.00A997.

View Article

J. Sarrazin, A. C. Lepage, X. Begaud, « High-impedance surface design considerations", IEEE Antennas and Propagation Symposium, Jun 2012, Chicago, United States. pp.3569 - 3572, 10.1109/APS.2004.1330117. hal-00983587.

C. Caloz, T. Itoh, "Electromagnetic Metamaterials Transmission Line: Theory and Microwave Applications", John Wiley & Sons, 2005.

View Article

R. Rodríguez-Berral, F. Mesa F. Medina, "Analytical multimodal network approach for 2-D arrays of planar patches/apertures embedded in a layered medium,", IEEE Transactions on Antennas and Propagation, vol. 63, no. 5, pp. 1969-1984, May 2015, doi: 10.1109/TAP.2015.2406885.

View Article

F. Mesa, R. Rodriguez-Berral, F. Medina, "Unlocking complexity using the ECA: The equivalent circuit model as an efficient and physically insightful tool for microwave engineering," , IEEE Microwave Magazine, vol. 19, no. 4, pp. 44-65, June 2018, doi: 10.1109/MMM.2018.2813821.

View Article

N. Fernez, L. Burgnies, J. Hao, C. Mismer, G. Ducourneau, D. Lippens, "Radiative quality factor in thin resonant metamaterial absorbers", IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 4, pp. 1764-1772, 2018, doi: 10.1109/TMTT.2017.2784808

View Article

D.M. Pozar, "Microwave Engineering", John Wiley & Sons, 4th edition, 2011.

C.A.. Balanis, "Antenna theory: Analysis and Design", John Wiley & Sons, Inc. NY, 1997.

Y. T. Lo, S. W. Lee, "Antenna handbook: theory, applications, and design", Chap. 10, "Microstrip antennas", edited by Y.T Lo, S.W. Lee, Van Nostrand Reinhold New York, 1988.

C.A. Balanis, "Advanced engineering electromagnetics", Chapter 8, "Strip line and Microstrip lines", John Wiley & Sons, 2nd edition, 1989

A.K. Verma, R. Kumar, "A new dispersion model for microstrip line", IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 8, pp. 1183-1187, Aug. 1998, doi: 10.1109/22.704966.

View Article

M.N. O. Sadiku, S. M. Musa, S.R. Nelatury, "Comparison of dispersion formulas for microstrip lines", IEEE Southeast Con, 2004. Proceedings., Greensboro, NC, USA, 2004, pp. 378-382, doi: 10.1109/SECON.2004.1287946.

View Article

M.V. Schneider, "Microstrip dispersion", Proc. IEEE, 60, no1, 144-146, Jan 1972.

View Article

E.O. Hammerstad, "Equations for microstrip circuit design", Proc. Fifth European Microwave Conf., 268-272, September 1975.

View Article

J. Hinojosa, "Contribution à la caractérisation électromagnétique de matériaux à partir de lignes plaquées - applications à l'étude de nouveaux matériaux", Ph.D. thesis, Univ. Lille, France, May 1995.