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ABSTRACT The present work studied effects of transformation of refractive index periodicity on 
electromagnetic wave propagation through grating waveguides. In lieu of the standard refractive index 
periodicity, although its unit cell consists of two kinds of materials, we consider few such unit cells as a 
new supercell, where the material parameters in a standard unit cell are changed. It has been shown how by 
changing parameters of the periodicity to control the wavelength and intensity of resonant optical mode 
(guided mode resonance) arising inside grating area. High quality factor calculated for the specific angle of 
incidence and periodicity parameter. Thus, we demonstrated that transformation of refractive index 
provides additional tools of controlling the GMR, and that means the sample can be designed more 
functional in terms of real application. 

INDEX TERMS Electromagnetic wave, grating, refractive index, resonance. 

I. INTRODUCTION 
HIN layers containing a periodic variation of the 
refractive index along the layer have attracted 

considerable interest in photonics because of their significant 
role in applications such as filters [1], sensors [2], lasers [3], 
etc. and in several diverse areas, such as acousto-optics [4], 
integrated optics [5], holography [6], and spectroscopy [7]. 
The periodic variation is usually obtained by means of a 
dielectric grating, which is superimposed on the upper 
surface of a substrate configuration. Although the diffraction 
of electromagnetic waves by planar gratings has been 
extensively studied for decades, the development of new 
technologies in sample growth and the means of their study 
have renewed considerable interest in these structures in 
recent years. A surface diffraction two-dimensional (2D) 
grating structure placed on the topmost layer of distributed 
Bragg reflectors was exploited as sample for biosensing 
applications [8]. All-dielectric quasi–three-dimensional 
subwavelength structure, consisting of multilayer films and 
metagratings, to achieve perfect anomalous reflections at 
optical frequencies has been proposed in [9]. A potential 
application of diffraction grating in optical sensing and 
imaging from visible to near-IR wavelengths have been 
demonstrated in [10]. New effects in grating structures can 
also be found due to the presence of material components 
with specific properties. In [11] authors demonstrated a 
grating-graphene metamaterial where grating-induced field 
enhancement significantly increases the already large THz 

nonlinearity of graphene, which allows the creation of higher 
harmonics (up to the ninth). A tunable graphene-based lattice 
structure has been proposed as the building blocks of several 
infrared systems in [12]. 
The operation of devices containing a dielectric grating 
depends on the properties of the electromagnetic fields 
guided by the structure. These fields appear either as surface 
waves traveling parallel to the structure or as leaky waves 
guided by the structure. Both types of waves appear as 
characteristic (free resonant) solutions of the boundary-value 
problem prescribed by the layer configurations. For specific 
combinations of incident angle and optical frequency, a 
resonance exists that allows the grating to couple light into a 
guided mode of the waveguide. For this guided mode 
resonance (GMR), the normally transparent structure 
becomes reflective. If the grating period is sub-wavelength, 
then the normally transparent structure becomes a mirror 
under resonance conditions. At resonance, the intensity in the 
waveguide region is also much higher.  
The reviews published in recent years [13, 14] confirm the 
importance of GMR in broad range of applications in 
research and industry. In particular, GMR gratings have been 
implemented in photodetectors [15], spectrometers [16], 
switching devices [17], sensors [18]. Let us also mention that 
most of the known resonant effects arising in optics and 
photonics can be investigated by studying diffraction 
gratings. For instance, the vast majority of the published 
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papers studying photonic bound states in continuum focus on 
gratings and other periodic structures [19].  
Therefore, a thorough study of GMR’s origin, features and 
various factors affecting them is of great theoretical and 
practical importance. In the present work, we have 
investigated how changes in refractive index periodicity in 
the grating area affect the intensity and wavelength of 
GMRs. The conditions for an high quality factor have been 
discussed. We have demonstrated that the grating can be 
designed to offer more functionality by changing the specific 
parameters of the grating structure.  

II. RIGOROUS COUPLED-WAVE ANALYSIS FOR 
PLANAR DIFFRACTION  
To analyze the diffraction of electromagnetic waves by 
spatially modulated media, we use the most common 
Rigorous Coupled-Wave Analysis [20]. There are many 
other approaches for the investigation of the diffraction by 
grating structures: the coordinate-transformation-based 
differential [21] for modeling surface-relief gratings; a 
modified method of lines [22] can accurately calculate not 
only average power but also field and phase distribution 
across reflected waves for apodised fibre gratings; rigorous 
integral equation method [23] combines semianalytical 
techniques and the Method of Moments exhibiting superior 
accuracy and numerical efficiency compared to other 
methods. The RCWA are well developed and validated [13, 
19, 20] especially for the types of structure we studied in our 
work. Another advantage of the method is a clear physical 
insight and a simple way to directly recover all the results we 
present. 
The goal is to find solutions of Maxwell’s equations in and 
out of the grating regions and then to match the tangential 
electric and magnetic field components at the boundaries. In 
the case of planar diffraction, the incident electric field is 
normal to the plane of incidence and all diffracted orders 
(forward and backward) lie in the same plane (the plane of 
incidence, the x – z plane, (Fig.1)). 
Let us briefly describe the rigorous coupled-wave analysis 
that we use in our calculations. Here we refer to Ref. [20], 
where a full description of the method can be found. The 
incident TE polarized and normalized electric field impinges 
on the grating structure at an angle θ (Fig. 1), given by 
 

 (1) 

where kx0 and kz0 are x- and z- components of the 
incident light wave vector. The normalized solutions in 
region I (z<0) and in region II (z>d) are given by 
 

 (2) 

 (3) 

where kxi is given by 

kxi= kx0 - i2p/L   (4) 

and  

 (5) 

L=I,II, k0 = 2p/l0 and l0 is the wavelength of light in free 
space, Ri is the normalized electric-field amplitude of the i th 
backward-diffracted (reflected) wave in region I, Ti is the 
normalized electric-field amplitude of the forward-diffracted 
(transmitted) wave in region II, and nl is the refractive index 
in the appropriate region. The magnetic fields in regions I 
and II can be obtained from Maxwell’s equation 
 

  
(6) 

where µ is the permeability of the region and ω is the angular 
optical frequency. 
In the grating region (0 < z < d) the tangential electric (y-
component) and magnetic (x–component) fields can be 
expressed by a Fourier expansion in terms of space-harmonic 
fields as  

  (7) 

 (8) 

where e0 and µ0 are the permittivity and permeability of 
free space, respectively. Syi (z) and Uxi(z) are the normalized 
amplitudes of the ith space-harmonic fields. 
Substititing Egy and Hgx into Maxwell’s equation for the 
grating region we obtain eigenvalue problem for Syi(z). Its 
solutions wim (eigenvector) and qm (eigenvalue) are used to 
form general expression for the fields in the grating region.  

Since waves can travel along the positive and negative 
directions of the z axis within the grating area, the 
dependence on z can be expressed as  
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where vim=qmwim,  and  are unknown constants. 
Using the boundary conditions we arrive at a system of 
linear equations with unknown coefficients: R,T, c+,c-.  
 
Let us bring two final equations for unknown c+ and c-: 

    (9) 

  (10) 

where Ainc is equal to amplitude of the incident field, and 
, w and 

v are the matrixes appeared in (11) and (12). Actually, RgI,II 
are also matrixes, which act as reflection operators within 
the grating area. Indeed, it can be seen from (13-14) that 
RgI acts on c- and, after adding the incident field, forms the 
amplitude of the field (c+) propagating in the opposite 
direction. RgII acting on c+ also forms the amplitude of the 
field (c-) propagating in the opposite direction. In the 
absence of the incident field, the system of equations (13-
14) only has a solution when the next determinant vanishes, 
that is:  
 

F(kx0,k0)=det(1-RgIRgII)=0   (11) 
 
It is dispersion relation for the GMRs.  

III.  DESIGN AND PARAMETERS OF THE GRATING 
STRUCTURE 
The structure that we use in our simulations is depicted in 
Fig. 1. We consider plane wave incidence from air to a 

FIGURE 1.  Grating structure. The outer substrate is extended to 
infinity. 

 
grating structure superimposed on a substrate made of SiO2 
with a refractive index of 1.47. For TE-polarized light, the 
incident plane wave is perpendicular (θ = 0°) and the electric 

field is parallel to the y axis. The grating consists of 
alternating high/low-index dielectric bars. The refractive 
indices of the high/low-index bars are taken as n1 =3.44 and 
n2 = 1.0, which represent the values of Si and air, and their 
widths are fixed at d1 and d2, with L=d1+d2 being the length 
of the standard unit cell, and d its thickness. We then 
combine these three unit cells (Nc=3) into a new unit cell, 
where one Si bar is removed. The case of Nc =5 is also 
considered in this paper. Schematic representation of the 
refractive index profile for Nc =1, 3, 5 is shown in Fig.2. We 
kept the length L=0.5 and d=0.5 constant in all our 
calculations. All sizes and lengths are given in µm. SiO2 and 
Si have been chosen as the main materials for the structure 
because of the importance of Si in modern optical materials.  

FIGURE 2. Schematic view of the refractive index for different 
values of number of standard unit cells Nc. Line with arrows show 
an unit cell. 
 
Also this combination of materials is often found as the main 
materials from which the grating is made [24-25]. 

IV. GUIDED-MODE RESONANCES 
In periodic structures similar to those studied in this work, 
the so-called anomalous reflection can manifest itself [26]. It 
is associated with multiple diffraction orders. The main 
contribution to the reflected/transmitted wave comes from 
several modes (several initial values of |m| in expansion 
(2,3)). The anomaly lies in the discrepancy between the 
reflection angle and the predicted Snell's law. The latter 
corresponds to the dominant contribution to the amplitude of 
the term with m = 0, while in such structures the main 
contribution comes from the terms with |m| >0. However, the 
purpose of this work is to analyze resonances in the 
reflection/transmission spectra of waves, regardless of the 
direction of their propagation, so the analysis of the 
contributions of the modes is not essential here, and may be 
the subject of a special study.  
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In this section, we study how the angle of incident plane 
wave and the parameters of the structure affect the 
wavelength and intensity of the GMR's. For that, we con-
sider the dispersion relation for the GMRs (11). Generally it 
consists of two parameters k0 and kx0. We consider here its 
solutions within the so-called light cone when using the 
standard relation: kx0=k0 sin(q). Thus varying the angle of 
incidence, we can calculate the position of the guided mode 
resonance (the value k0, which uniquely corresponds to the 
wavelength of the incident light) for different angles. Since 
the function F(kx0,k0) in (15) has complex values, we find 
numerically its real and imaginary parts in a certain 
wavelength range, and then we can choose such a value λr  for 
which Re(F) » 0 and Im(F)»0. For better visualization we 
also focused on the value of 1/|F|. An example is shown on 
Figure 3. Note that if for some value of wavelength the 
values of Re(F) or Im(F) are close to zero then also the sharp 
peaks could be arise on the dependencies (for l =3.0 on 
Fig.3), but they are not relating to the GMR, because the 
corresponding value of wavelength are not solution of 
equation (11). 

FIGURE 3. The diffraction efficiencies of the transmitted (dashed 
line) and reflected (dots) waves (a), and Real (dashed line) and 
Imaginary (dots) parts of function F versus wavelength (b); Nc=5, 
q=45°, d1/L=0.6. 

 
Having calculated the field amplitudes R and T, and the 

formulas given in [27], it is easy to calculate the diffraction 
efficiencies of the transmitted DT and reflected DR waves. 
These quantities are integral characteristics used to estimate 
the scattered energy. For the same range of the 
wavelengths, the dependencies of the real and imaginary 
parts of the function F are presented.  

It can be clearly seen that the zero of the 
function F corresponds to the resonance position at lr=3.4. 
To explain the origin of that resonance we have to note first 
we are considering the case of Nc =5. This means that 5 
standard cells are merged into one supercell. Meanwhile, 
the parameters of one of the materials have changed. Thus, 
we can consider this supercell as a periodic structure with a 
defect. When light passes through such a structure, the 
frequency dependence of transmission and reflection is 
characterized by a pronounced resonance in the form of a 
narrow peak [28, 29]. To define the position of this kind of 
resonance, we calculated the frequency band structure of a 
1D photonic crystal with the cell described above (as a 
supercell in the case of Nc=5). The presence of defect 
frequencies is expected in the form of narrow bands with 
small dispersion. However, in the grating structure, the 
wave vector has two components, while the defect 
frequency  was calculated for the purely 1D case. That 
is why there is no exact match between  and lr. But 
there is a simple way to bind these two values. For instance, 
for incidence angle of 45º we have kx=kz=k0 . Assuming 
that kx corresponds wave propagation along periodicity 
direction, while k0 – to the resonant wavelength, we have  

   (12) 

Indeed, for d1/L=0.6 relation (12) is true as lr=3.4 (Fig.3) 
and  (calculated 1D band structure) and just the 
case has been calculated on Fig.3. Thus, a sharp peak in the 
values of DR and DT at the resonant wavelength is 
corresponding to the characteristic defect frequency. 

We also varied the ratio of d1/L to investigate its effect  

FIGURE 4. Resonance wavelength for different incidence angles. 
(a) - Nc=3; (b) - Nc=5. 
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on GMR positions. The corresponding results are presented 
in Fig. 4 for Nc=3 and 5. The values for the dependencies 
on Figures 4,5 were obtained according to the procedure 
described above: the resonant wavelength has been 
calculated as solution of equation (11) for a given angle of 
incidence and a width d1 of Si grating. Let us consider its 
two main features: for any line and any angle of incidence, 
the value of the resonant wavelength decreases as the ratio 
d1/L increases (i); for a fixed value of the ratio d1/L, the 
resonant wavelength increases as the angle of incidence 
increases with Nc=3 and vice versa for Nc=5 (ii). Both of 
these features can be explained through a simple theory 
described in Ref. [30]. According to [30], the resonance 
regimes are defined by the following inequalities: 

 
max(nI,nII) ≤ |nI sin(q)-il/L| < ng 

 
Here, ng is the average value of the refractive index in 

grating area. After [31] it can be calculated by the formula: 
 

 

where n1,2 are the refractive indexes of the materials within 
the unit cell, and f is given by the areas covered by n2 over 
the period. Thus, it is easy to calculate appropriate values 
for Nc=3 and Nc=5. Moreover, it turns out that these values 
depend on the ratio d1/L, in such a way that as this ratio 
increases, ng decreases. Therefore, increasing the ratio d1/L 
leads to a shift of resonant wavelengths towards smaller 
quantities. On the other hand, the angular dependence of the 
resonant wavelength has the opposite character of change 
for different l/L ratios (see a typical figure in [30]), which 
leads to the different angular dependences of the resonances 
for Nc=3 and Nc=5. 

Assuming the above, it can be concluded that the grating 
couples light into the guided mode for specific 
combinations of incident angle, light wavelength, different 
material fractions (ratio d1/L) and refractive index 
periodicity of the unit cell structure. 
At resonance, a structure becomes reflective and has a 
much higher intensity in the grating region. For Nc=3 (a) 
and Nc=5 (b), the dependence of the field intensity within 
the grating area on the resonant wavelength is shown in Fig. 
5. Despite the absence of a correlation between the 
dependencies for these cases, their behavior can be 
explained by the same factor: the frequency band structure 
of the 1D periodic sample. The case Nc =3 corresponds to a 
regular periodic structure: its frequency band structure 
consists of dispersion curves separated by gaps and is the 
same for each d1/L value. By increasing the angle of 
incidence, we shift the resonance position, thus moving it 
away from the allowed frequency band. This shift leads to a 
decrease in field intensity. If we consider the intensity 
values for each separate incident angle value, then their  

FIGURE 5. Field amplitude at GMRs for incidence angles: 
solid - 10°; dashed - 30°; dots - 45°; a – Nc=3; b – Nc=5. The 
values for 45° (b) are halved. 
 
quantities also depend on the position of the resonances 
with respect to the nearest frequency band: if they are 
approaching that band, then the intensity can even be 
increased (as for line 1 and partly for line 2), while in the  
case of line 3 it can be concluded that the resonance moves 
away from the band.   
The absence of a clear regularity of the lines in Fig. 5(b) is 
attributed to the existence of defect lines in the frequency 
band structure of the 1D sample for Nc=5. If GMR appears 
in the vicinity of the defect frequencies (corresponding to 
1D samples according a relation (12)), then their proximity 
to them leads to a sharp increase in intensity. Otherwise, we 

FIGURE 6. Quality factor Q: Nc=5, q=45°. 
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see smooth changes in intensity (as in lines (1-3) in Fig. 5). 
For the case of maximum intensity Nc=5 and q=45°, we 

calculated the corresponding quality factors (Fig. 6). 
As we mentioned above, this high value can be really 

explained by the correspondence of the resonance position 
with the defect frequency of the 1D periodic sample.   

Generally, waves propagating in the grating area have 
two practically independent eigenmodes: transverse (along 
the z axis) and longitudinal (along the direction of 
periodicity). Besides, if the eigenvalues of these modes are 
very close to each other, then this leads to an increase in 
intensity. Therefore, by combining structural parameters 
(periodic elements, thickness) and incident waves (angle, 
wavelength), it is possible to design samples for specific 
purposes. 
Thus, a sharp peak in the values of DR and DT at the 
resonant wavelength coincides with the characteristic defect 
frequency. 

V. CONCLUSION 
In conclusion, we consider the planar diffraction of 
electromagnetic waves through silicon-on-insulator grating 
waveguides. By introducing complex unit cells of refractive 
index periodicity into the grating area, extra states known as 
guided mode resonances can be created. In order to study its 
effect on GMR positions, the variation of periodicity 
parameters has been considered. The results show that a 
wavelength shift of the GMR and a deformation of the 
diffraction efficiency spectrum exist with changes in ratio of 
different material fractions as well as with different angles of 
the incident field. The wavelength shift of GMR correlates 
with the frequency band structure caused by the 1D 
periodicity of the refractive index. The GMRs are very 
sensitive to changes in different periodicity parameters. In 
particular, it is found that by varying the grating parameters, 
it is possible to match the eigenmodes along and across the 
structure in such a way that an extremely large value of the 
quality factor can be obtained. Thus, the grating can be 
designed to achieve strong wavelength-dependent behavior 
and/or high local field intensities. 
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