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ABSTRACT Numerical results for the attenuation constant obtained by using the generalized 
telegraphist’s equations (GTEs) based electromagnetic analysis method and comparison with the HFSS 
(High Frequency Structure Simulator) results are reported. To calculate the attenuation constant with the 
GTEs method, not only the amplitudes of the voltage modes but also the amplitudes of the current modes 
must be found. In this paper, new relations for the amplitudes of the current modes are proposed, which 
allow the accurate calculation of the attenuation constant. To validate these relations, the attenuation 
constants for homogeneous and different partially dielectric-filled rectangular waveguides are computed for 
the fundamental propagation mode by using the GTEs based analysis method and the results are compared 
with those obtained with HFSS. It is shown that using the revised relations for the amplitudes of the current 
modes, the GTE method can be used to compute accurately the propagation and attenuation constant, but 
only for propagation modes in which the components of the electric field are not oriented perpendicular to 
the interface between different dielectrics. This limitation is not due to the proposed current mode relations, 
but is due to the GTE method which cannot highlight the electric field discontinuities. 

INDEX TERMS Attenuation constant, Generalized telegraphist’s equations, Electromagnetic analysis 
method, Partially dielectric-filled rectangular waveguide. 

I. INTRODUCTION 
AVEGUIDES are widely considered a viable 
solution for high microwave frequencies, due to 

their lower attenuation constants compared to transmission 
lines. Various numerical methods have been proposed for 
calculating the propagation parameters of the waveguide, 
mainly the propagation constant and the attenuation 
constant. For certain particular cross-section configurations 
of uniform metallic waveguides that are partially or 
completely filled with solid dielectrics, accurate analytical 
solutions to the electromagnetic problem are possible [1-6]. 
Also, different configurations of dielectric waveguides have 
been analyzed using approximate analytical methods [7] or 
semi analytical methods [8-10]. For waveguide 
configurations when analytical methods cannot be used to 
solve the electromagnetic field equations, numerical 
methods have been proposed. Reviews of these methods, as 
well as a comparison between them, are presented in 
[11,12] and [13], respectively. The best known numerical 
methods that can be used for the analysis of uniform 
waveguides of any shape and dielectric profile of the cross-
section refer to the finite difference method [14-16], the 

finite element method [17-21] and methods that combine 
these two methods [22-24], but also the numerical method 
based on the generalized telegraphist’s equations (GTE) 
[25-28]. Moreover, to reduce the computation time of 
cutoff frequencies of metallic waveguides, numerical 
techniques based on the meshless method [29,30] or the 
method of auxiliary sources with an excitation source 
[31,32] have been proposed and successfully applied. 

Compared to the finite-difference/element methods, the 
GTE analysis method does not show spurious modes and 
moreover, the solutions for the propagation constant are 
stationary as a result of the Galerkin’s procedure used to 
develop this numerical method.  

The GTE based analysis method was used in [26] to 
calculate the propagation constants for different cross-
section configurations of dielectric waveguides, as well as 
for determining the field configurations on different 
propagation modes, but no numerical results about the 
attenuation constant are provided. For this last task, the 
amplitudes of the current modes must also be computed. 
Note that only the amplitudes of the voltage modes are 
needed to calculate the propagation constant, but if the 

W 



 S. Simion et al. 

 

 VOL. 12, NO. 1, FEBRUARY 2023 18 

values for the attenuation constants are required, the current 
modes must be known, too. Formulas for the current modes 
as a function of the voltage modes are given in [26], but 
they are not used to compute the attenuation constant. 
When used, it can be shown that huge differences for the 
attenuation constant compared to HFSS (High Frequency 
Structure Simulator) [33] are obtained for any cross-section 
waveguide configuration. New relations for the current 
mode amplitudes without any demonstration of them were 
first used in [34], where the attenuation constant for a 
dielectric waveguide was calculated with the GTE method 
and the results were compared with those obtained with 
HFSS. Small differences were observed between the values 
calculated by the two methods, but no analysis of these 
differences was performed for other waveguide 
configurations. 

In this paper, the relations proposed in [34] for the 
current mode amplitudes are analytically demonstrated. 
Also, numerical results obtained with the GTE method are 
presented for the attenuation constants, as well as for the 
propagation constant, on the dominant modes that 
propagates on different rectangular metallic waveguides, 
homogeneously or partially filled with solid dielectrics. The 
results obtained with the GTE method are compared with 
those obtained with HFSS. It is shown that differences from 
the HFSS results can be observed for the propagation and 
attenuation constants, but not for all configurations of the 
analyzed cross-sections. Based on the representations of the 
transverse electric field obtained by GTE and HFSS 
analysis methods, it is explained why the results for the 
propagation and attenuation constants obtained with the 
GTE method could be different from those obtained with 
HFSS. 

The paper is organized as follows. In Section II, although 
the GTE based analysis method has already been presented 
by other authors (see [25-28]), in order to improve the 
clarity of the whole paper, this method is also presented 
here briefly. However, unlike those already published, this 
section does not focus primarily on the theoretical aspects 
of the method, but on the formulas and details needed to 
implement this method. In Section III, the theoretical 
support for the relations between the voltage and current 
mode amplitudes proposed in this paper is presented. The 
formulas used for the calculation of the conductor and 
dielectric losses are given in Section IV. Section V is 
dedicated to numerical results that validate the proposed 
relations between voltage and current modes. The 
conclusions on the results obtained in this paper are 
presented at the end of the paper, in Section VI. In 
Appendix, the expressions of the functions mentioned in 
Section II are given. 

II. DESCRIPTION OF THE ANALYSIS METHOD 
If solid dielectrics are placed inside the hollow metallic 
waveguides, the propagation modes are different from the 

transverse magnetic ( ) and transverse electric 
( ) modes which propagate through the hollow 
metallic waveguides. In this case, for any propagation 
mode, the expressions of the transverse electric and 
magnetic field components (  and , respectively) can 
be written as sums of contributions of the  and  
propagations modes of the hollow metallic waveguide 
[25,26]. In the following,  is the propagation constant of 
the propagation mode having the field components  and 

.  
In practice, a finite number of  and  modes 

of the hollow waveguide are taken into account. As much 
higher is the number of   and  modes taken into 
account, as much better is the numerical accuracy for  
and . If  and are the maximum values of the 
integer numbers  and , respectively, for  

, the number of  modes is 

, while the number of  modes is 

. In order to simplify the implementation of 
the GTE method, the  and  modes are 
combined in a single sum of  terms, assuming additional 
conditions for the  modes which are not allowed (i.e. 

 modes with  or  must not be taken into 
account).  

Therefore,  and can be written as [26]: 

(1a) 
and 

(1b) 
where  and  are the voltage and current 
mode amplitudes for the th  mode, 

respectively. Also, in (1a,b),  and 

, as well as  

 and  are 
orthogonal functions of the th  and  
propagation mode, respectively [1],  

 is the two-dimensional gradient operator, while 
,  and  are unit vectors in the ,  and  

directions of the  coordinate system, respectively.  
   In this paper, the hollow metallic waveguide is considered 
rectangular, having the width  and the height  ( ). 
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The functions  and  are scalar functions of the 
th  and th  propagation mode, 

respectively, which are solutions of the Helmholtz 
equations,  and  

, where  is the square of the 
cutoff wave number for the th mode,  and  
as well, while  and  are the values of  and , 
respectively, for this th mode ( ).  

 Solving the Helmholtz’s equations for the scalar 
functions  and  and imposing boundary conditions 
on the metallic walls of the rectangular hollow waveguide, 
the following expressions are obtained [1]: 

  and               (2a) 

                    (2b) 

In (2a),  for  or , while  

 for  and . In (2b), 
, where  for  and , while 

 for  and , as well as for  and 
. Also,  for .  

Following the technique presented in [26],  coupled 
equations for the  and  voltage modes ( ) 
corresponding to the  and  propagation modes 
of the hollow waveguide can be obtained, for any mode that 
propagates along the dielectric-filled metallic waveguide. 
These coupled equations may be written in a matrix form, 
obtaining the characteristic eigenvalue equation 

, where  is  matrix, while  

and   are the eigenvalue 
and voltage eigenvector, respectively, for a particular 
propagation mode. The expressions for the elements of the 
matrix are given by: 

 (3) 

where the functions , , , ,  and  are mentioned 
in  the Appendix of this paper, while  is Kronecker 

delta (  if  and  if ). 

Determining the eigenvalues of the matrix ,  
solutions for  are obtained, each belonging to a particular 
mode that propagates along the dielectric-filled metallic 
waveguide ( solutions for  modes and  solutions 
for  modes).  A mode can propagate along the 
waveguide only if  , when the propagation constant  

is equal to . The higher the frequency of analysis, the 
more modes are allowed to propagate. The eigenvector 

is computed for each eigenvalue, . 

III. RELATIONS BETWEEN THE VOLTAGE AND 
CURRENT MODE AMPLITUDES 
If (1a,b) are used in the expressions given in Section II for 

 and , taking into account (2a,b), the 
electric and magnetic field components along the axis 

and axis may be written as , 

,  and where: 
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(4c) 
and 

  

(4d) 

The longitudinal magnetic and electric field components 
can be obtained from the transverse field components, with 
the formulas [1]:  

and , where f  is the 

frequency. Using (4a-d), we can write and 

, where: 

      (5a) 

and 

     (5b) 

Each field component given by (4a-d) is a sum of   
and  field components which may be written as 
follows: 

, ,  

 and . 

On the other hand, these  and  field 
components are related to the longitudinal field components 
based on the following expressions [3]:  

, , 

, 

, 

, 

, 

 and . 

Using (4a-d) and (5a,b) in the latter expressions, eight 
conditions are obtained which are satisfied for any  from 1 
to , only if: 

 and                   (6a) 

.                    (6b) 

Formulas (6a,b) are different from those proposed in 
[26], where instead of using the propagation constant  of 
the mode consisting of superposition of  and  

modes, the propagation constant  is used 
for the th  or  mode, where  is the 
free space wave number and  is the speed of light.  

Knowing the voltage and current eigenvectors, the field 
components can be computed using the expressions given 
in Section III. Then, the attenuation constants due to the 
conductor and dielectric losses can be computed as 
presented in the next section. However, the GTE method 
cannot model the field discontinuities between different 
dielectrics [26]. Therefore, as shown in Section V, the 
attenuation constant values computed with the GTE method 
for certain propagation modes could be wrong. 

IV. CONDUCTOR AND DIELECTRIC LOSSES 
The attenuation constants due to the conductor and 
dielectric losses for a certain mode that propagates through 
the waveguide are given by the general formulas 

 and , respectively, 
where:  

              (7a) 

is the power flowing down the waveguide,  

                                  (7b) 

is the power loss in the metallic walls,  

     (7c)  

is the power loss in the solid dielectrics inside the 
waveguide, while  is the surface 
resistance of the metallic walls of conductivity , L  is 
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the number of different values of the dielectric constants 
 ( ) and  is the cross-section area 

occupied by the solid dielectric of dielectric constant  
and loss tangent .  

Also, in (7b,c): 

 

 

and 

, 

where (4a-d) and (5a, b) must be taken into account to 
obtain the numerical values of these functions. 

V. NUMERICAL RESULTS 
Following the method presented in the previous sections, 
the propagation and attenuation constants on the 
fundamental mode were calculated for three waveguide 
cross-section configurations, all involving rectangular 
metallic waveguides. The first case concerns the 
homogeneous dielectric-filled rectangular waveguide 
(HDFRW), while the other two refer to partially dielectric 
filled rectangular waveguides (PDFRW-1 and PDFRW-2) 
with the cross sections shown in Fig. 1. All three 
waveguides are homogeneous along the propagation  
axis.  

The GTE based method presented in Sections II and III, 
as well as the formulas given in Section IV for the 
attenuation constants due to the conductor and dielectric 
losses have been implemented in MATHCAD [35]. 

For the numerical results presented in the following, the 
conductivity of the waveguide metallic walls is equal to 

 S/m (copper). 

A. HDFRW ANALYSIS  
A WR90 rectangular metallic waveguide ( 22.86 mm 
and  10.16 mm) is filled with homogeneous dielectric 
having  and 0.001. For this particular 

case, trans-verse electric and magnetic modes propagate 
through the waveguide and the fundamental mode is . 
This waveguide was analysed for the propagation and 
attenuation constants of the fundamental mode, by using the 
GTE method and HFSS. The results are plotted in Fig. 2, 
where no differences have been observed between values 
obtained by the two analysis methods. Also, the numerical 
values for the propagation and attenuation constants are the 
same with those obtained by the closed formulas (see for 

example [3]). This perfect match can be explained as 
follows.  

If the dielectric fills homogeneously the entire cross 
section of the waveguide, from Appendix,  and 

 are equal to  if  and equal to 0 if , 
while  and  are equal to 0, for any  and .  
  

     
(a)                                                (b)                                 

FIGURE 1.  Cross-section configurations for the partially dielectric-filled 
rectangular waveguides analyzed in this paper: PDFRW-1 (a) and  
PDFRW-2 (b). 
 

 
FIGURE 2.  Numerical results for the propagation and attenuation constants 
obtained with the GTE based method and with HFSS, for HDFRW on the 
TE10 mode,  
 
Also,  is equal to  if   and equal to 0 if 

. Therefore,  given by (3) are equal to 0 if ,  

so that  is a diagonal matrix. In this case, for a 
particular mode that propagates along the waveguide, only 
one element of the eigenvector  

 is different from zero. If the 
mode under analysis is , the voltage mode different 

from zero is , where  is the index number 
corresponding to the  mode that propagates along the 
empty metallic waveguide. When the dielectric fills the 
entire cross section, the same results for the propagation 
and attenuation constants are obtained for small value of R , 
as well as for high values of R . In this case, the minimum 
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value of R must be chosen such as the propagation mode 
under analysis to be taken into account. 

For any mode propagates along the metallic waveguide 
filled homogeneously with dielectric, it can be shown that 
the expressions for the electric and magnetic field 
components given by (4a-d) and (5a,b) may be reduced to 
the well-known forms published in many microwave books 
(see for example [1-3]). For this reason, there is no 
difference between the values of the propagation and 
attenuation constants obtained with GTE method and the 
values obtained using closed formulas [3]. 

B. PDFRW-1 ANALYSIS 
A WR90 rectangular metallic waveguide partially filled 
with solid dielectrics as shown in Fig. 1a has been analysed 
with the GTEs based analysis method and with the HFSS 
software. The following input geometric data were 
imposed: 22.86 mm, 10.16 mm, 16 mm and 

8 mm. 
 Two cases have been analysed for the fundamental 

  propagation mode. The first case corresponds to the 
situation when the dielectrics are the same,  
and also 0.02. The second case 

corresponds to the situation when two different solid 
dielectrics partially fill the waveguide: 2.25, 

4.4, 0.001 and  0.02. 

Numerical results for the propagation constant, as well as 
for the attenuation constants due to the conductor and 
dielectric losses are presented in Fig. 3, for R = 5 (35  
modes and 25  modes have been taken into account).  
 For different values of R, the normalized propagation 
constant and attenuation constants computed with the GTE 
method at 6.5 GHz are given in Table I. As it is observed, 
the changes in the values of these parameters are small, if R 
is greater than 5. 
 The  transverse and longitudinal electric field 
magnitudes for the case of two different solid dielectrics 
have been also obtained with the GTE based analysis 
method and with HFSS, at 6.5 GHz (the waveguide length 
is equal to 50 mm). The results are presented in Fig. 4. 
 From Figs. 3 and 4, very good agreement between the 
results obtained with the GTE based analysis method and 
HFSS is observed for PDFRW-1. For this propagation 
mode, there is no discontinuity in the electric field. For this 
reason, the electric field representations obtained with the 
GTE method are in very good agreement with those 
obtained with HFSS, as well as the propagation and 
attenuation constant values obtained by the two methods of 
analysis. 

Since the conductor and dielectric losses, as well as the 
transverse electric field configuration depend on the 
amplitudes of the current modes, the good agreement 

between the results obtained with the GTE method and with 
HFSS validates the relations between the amplitudes of the 
voltage and current modes proposed in this paper.  

 
TABLE I. Normalized Propagation Constant and Attenuation Constants 
Computed for PDFRW-1, for Different Values of R, at 6.5 GHz. 

 
R   (Np/m)  (Np/m) 

3 0.861 0.018 0.377 
4 0.862 0.018 0.356 
5 0.863 0.018 0.356 
6 0.868 0.019 0.365 
7 0.868 0.019 0.365 

C. PDFRW-2 ANALYSIS 
For the second dielectric-filled waveguide configuration, 
the following input data have been assumed: 5.7 mm, 

2.8 mm and 25 mm, while 2.4 and the 
dielectric rod tangent loss is equal to 0.0055 (see Fig. 1b). 

This waveguide was also analyzed in [30] for the first 
four propagation modes, where the main purpose was the 
study of the mode matching between the dielectric 
waveguide and the rectangular hollow metallic waveguide, 
as well as the simulation conditions of the dielectric 
waveguide in relation to the size of the metallic waveguide.  
 Using the GTE based numerical method presented in  
Section II, the propagation constant  for the  
fundamental mode was computed at different frequencies, 
for R = 7 (63  modes and 49  modes have been 
taken into account) and R = 9 (99  modes and 81  
modes have been taken into account). 
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           (b) 
 

                (c) 
 
FIGURE 3.  Numerical results obtained with the GTE based method (R=5) 
and with HFSS on the TE10 mode, for PDFRW-1 (see Fig. 1a): the 
propagation constant (a), the attenuation constant due to the losses in the 
metallic walls (b) and the attenuation constant due to the losses in the solid 
dielectric (c). 

 
 (a)                                             (b) 

FIGURE 4.  TE10 transverse and longitudinal electric field magnitudes 
obtained at 6.5 GHz for PDFRW-1 (see Fig. 1a) with the GTE based analysis 
method for R=5 (a) and with HFSS (b). 

 
The results for the propagation constant have been 

normalized to the free space wave number , and this 
ratio is presented graphically in Fig. 5, where, for 
comparison, the results obtained with HFSS have been also 
plotted. The graph shows that increasing the number of 
modes taking into account in the GTE based analysis 

method (i.e. increasing the value of R), the results are 
getting closer to the HFSS results. 

The attenuation constants  and  due to the losses in 
the metallic walls and the dielectric rectangular rod, 
respectively, were also computed using the GTE method 
and the results were compared with HFSS. The numerical 
values obtained for  showed that this ratio increases 
rapidly as the frequency increases, going toward 104 for 
frequencies around 50GHz. Therefore, the overall 
attenuation constant  approaches . 

The variation of the attenuation constant  versus the 
 

 
FIGURE 5.  Normalized propagation constant versus the frequency, obtained 
with the GTE analysis method and with HFSS, for the  mode propagates 
on PDFRW-2 (see Fig. 1b). 
frequency is shown in Fig. 6, where the results obtained by 
using the GTE numerical method are represented by 
symbols, while the HFSS results are given by solid line. It 
is observed that the results obtained with the GTE method 
for R equal to 7 are practically the same as for R equal to 9. 
Therefore, the difference from the HFSS results is not due 
to the fact that the value of R is too small, but, as shown 
below, is due to the discontinuities of the transverse electric 
field observed in the HFSS results and which cannot be 
highlighted by the GTE method. From Fig. 6, the GTE 
method overestimates the attenuation constant compared to 
the values obtained with HFSS.  
 The differences between the values obtained with the 
GTE method for R at the same frequency are small, so that, 
for clarity, the symbols for different R values were plotted 
intercalated in Figs. 5 and 6.  
 The normalized propagation constant and attenuation 
constants computed with the GTE method at 40 GHz for 
different values of R are given in Table II. Small changes in 
the values of these parameters are observed for R greater 
than 9. 

The magnitude of the transverse electric field for the  
mode is presented in Fig. 7, for R = 9, at 40 GHz. 
Compared to HFSS results, no discontinuities in the field 
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FIGURE 6.  The overall attenuation constant versus the frequency, obtained 
with the GTE analysis method and with HFSS, for the  mode propagates 
on PDFRW-2 (see Fig. 1b). 

 
TABLE II. Normalized Propagation Constant and Attenuation Constants 
Computed for PDFRW-2, for Different Values of R, at 40 GHz. 

 
R   (Np/m)  (Np/m) 

5 1.131 0.002452 1.548 
6 1.152 0.00203 1.866 
7 1.152 0.0028 1.851 
8 1.158 0.002609 1.967 
9 1.165 0.002531 2.075 

10 1.166 0.002505 2.083 
 

 (a) 
 

 
(b) 

FIGURE 7.  Magnitudes of the transverse electric field for the  mode that 
propagates on PDFRW-2 (see Fig. 1b) at 40 GHz, obtained with the GTE 
analysis method when R=9 (a) and with HFSS (b). 

 
representation at the interface between the dielectric rod 
and air are observed in the results obtained with the GTE 
method. The difference between the representations of the 
transverse electric field obtained by the two methods may 
explain why the differences between the values of the 
attenuation constants obtained by the GTE and HFSS 
method are not small. 

From Fig. 8, because  for , no difference 

can be seen between the results obtained with the GTE 
method and HFSS for the longitudinal electric field 
magnitude on the  mode (  and the waveguide 
length is equal to 20 mm). This may explain why the results 
for the propagation constant obtained with the GTE and 
HFSS methods are practically the same, if the value of R is 
high enough (see Fig. 5).  

VI. CONCLUSION 
New relations for the amplitudes of the current modes used 
in the GTEs based analysis method have been proposed. 
The correctness of these formulas is a condition to obtain 
correct values of the attenuation constant by using   the 
GTE based numerical method. To validate the proposed 
relations, homogeneous dielectric-filled rectangular 
metallic waveguide and two partially dielectric-filled 
rectangular 
 

  
(a) 

 
 
 
 

   
(b) 

FIGURE 8.  Magnitudes of the electric field along the PDFRW-2 (see Fig. 1b) 
for the  mode at 40 GHz and y = b/2, obtained with the GTE analysis 
method when R=9 (a) and with HFSS (b). 
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metallic waveguides have been analyzed for the 
propagation and attenuation constants, as well as for the 
transverse and longitudinal electric field distributions, on 
the fundamental propagation modes. The results obtained 
with the GTE method were compared with those obtained 
with HFSS, and the following conclusions can be drawn:   
- For the homogeneous dielectric-filled waveguide, the 
results obtained with the GTE method match the HFSS 
results perfectly for the propagation constant, as well as for 
the attenuation constants. 
- For the first partially dielectric-filled rectangular metallic 
waveguide (PDFRW-1, see Fig. 1a), there is no 
discontinuity of the electric field on the  fundamental 
propagation mode, and the transverse and longitudinal 
electric field obtained with the GTE method and HFSS are 
the same (see Fig. 4). For this reason, the results obtained 
with the GTE method for the propagation and attenuation 
constants converge to those obtained with HFSS.  
- For the second partially dielectric-filled rectangular 
metallic waveguide (PDFRW-2, see Fig. 1b), the transverse 
electric field obtained with HFSS for the propagation mode 

 shows discontinuities at the interface between the solid 
dielectric and air which cannot be highlighted by the GTE 
analysis method. As a result, the values for the attenuation 
constant obtained with the GTE method are different from 
those obtained with HFSS (see Fig. 6). 
- Electric field discontinuities are present only for 
propagation modes with electric field components that are 
oriented perpendicular to the interface between different 
dielectrics. This is the situation for PDFRW-2, but not for 
PDFRW-1. Because the GTE method cannot highlights 
these electric field discontinuities, the electric field 
obtained by using this method is not accurate for PDFRW-
2, but it is accurate for PDFRW-1. For this reason, the 
attenuation constant obtained with the GTE method 
converge to the values obtained with HFSS for PDFRW-1, 
but not for PDFRW-2 (see Fig. 3 compared to  
Fig. 6). 
 The formulas proposed in this paper for the amplitudes 
of the current modes can be used to compute accurately the 
attenuation constants of partially dielectric-filled 
waveguides, for the propagation modes in which the 
components of the electric field are not oriented 
perpendicular to the interface between different dielectrics. 
These propagation modes include the  fundamental 
mode which are allowed on the partially dielectric-filled 
waveguides with axis dielectric homogeneity. 
 Despite the computation time which is longer compared 
to HFSS, the GTE analysis method can be useful for 
calculating the field components for a propagation mode, 
but also as an alternative solution to the results obtained 
with a commercial analysis software. 

APPENDIX 
In this Appendix, L is the number of different values of the 
dielectric constants  ( ) and  is the cross-

section area occupied by the solid dielectric of dielectric 
constant .  

The functions used in (3) have the following expressions: 
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. 

Also, 

,  

 

and 

. 

 
where the expressions of   and  have been given in 
Section II, as well as the expression of the cutoff wave 
number, . 
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