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ABSTRACT Failure of element (s) in antenna arrays impair (s) symmetry and lead to unwanted distorted 
radiation pattern. The replacement of defective elements in aircraft antennas is a solution to the problem, but 
it remains a critical problem in space stations. In this paper, an antenna array diagnosis technique based on 
multivalued neural network (mNN) inverse modeling is proposed. Since inverse analytical input-to-output 
formulation is generally a challenging and important task in solving the inverse problem of array diagnosis, 
ANN is a compelling alternative, because it is trainable and learns from data in inverse modelling. The mNN 
technique proposed is an inverse modelling technique, which accommodates measurements for output model. 
This network takes radiation pattern samples with faults and matches it to the corresponding position or location 
of the faulty elements in that antenna array. In addition, we develop a new training error function, which focuses on the 
matching of each training sample by a value of our proposed inverse model, while the remaining values are free, and 
trained to match distorted radiation patterns. Thereby, mNN learns all training data by redirecting the faulty elements 
patterns into various values of the inverse model. Therefore, mNN is able to perform accurate array diagnosis in an 
automated and simpler manner. We demonstrate the proposed technique in proof-of-concept via an HFSS-based 
simulation of 10 𝗑 10-array of waveguides in realistic noise scenario. The numerical results confirm the appropriateness 
and effectiveness of the proposed method. 

 INDEX TERMS Antenna measurement, array diagnosis, mNN, fault detection, electromagnetic sensing, and inverse modeling.  
 
 

I. INTRODUCTION 
ailures identification and detection in large antenna array is a 
relevant topic both in theory and in practice with various 

applications in both military and civilian market. Current and future 
technologies employ sophisticated active or phased arrays with large 
elements.   For example, large array employed in RADAR systems, 
full MIMO systems, massive MIMO, and personal communication 
devices that require complex antenna arrays. As a result, there will 
always be a demand for fast and accurate complex antenna systems 
diagnosis, to resolve the unacceptable radiation pattern distortion 
caused by element (s) failure in the array (Figure.1).   
Many antenna array diagnosis methods, based on genetic algorithms 
[1], [2], exhaustive search [3], matrix inversion [4], and MUSIC [5], 
have been developed in literature to identify faulty antenna elements 
in an array. All the methods compare the array under test (AUT) with 
the radiation pattern of an “error free” reference array. All the 
methods in [1-5] need big measurement samples for large antenna 
arrays, to get reliable diagnosis. Reducing the measurement samples, 
compressive sensing (CS) based techniques have been reported in 
[6]-[9]. Despite the compelling outcome, the methods in [1]-[9] 

focused on the detection of sparsity pattern of a failed array, i.e. failed 
elements location, not on the complex blockage, as addressed in [10]. 
Moreover, CS methods exhibit various limitations, such as: (a) they 
required taking measurements in various receive locations, and they 
are not appropriate when both receiver and transmitter are fixed. (b) 
They assume “error free” receive antennas (i.e. only fault at AUT), 
which is not always true in reality because fault can occur at 
transmitter and receiver. (c) they do not perform optimization on CS 
measurement matrices. The shortcomings of CS based methods [6]-
[10], and the high time of diagnosis required by methods in [1]-[5] 
and complexity in measurement time cost motivate the need for an 
intelligent antenna array diagnosis method. Inspired and motivated by 
[11], an approach based on artificial neural network is presented to 
model the inverse radiation problem for automated and simple 
antenna array diagnosis. 
 ANNs are identified to be a useful and powerful 
microwave imaging and design tool [12], [13]. This method has been 
deployed in various areas such as microwave components parametric 
modeling [14], [15], and modeling of microwave devices [16], [17]. 
ANN is capable of learning the existing non-linear relationships  
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between antenna element features and the radiation patterns. The 
ANN trained to model the antenna under test (AUT) is a forward 
model, with radiation patterns as inputs to the model, and elements 
parameters (e.g. position and location) as the output. For the purpose 
of array diagnosis, the radiation patterns are processed in reverse 
direction so as to detect the location of faults from based on the 
reference radiation patterns (a priori knowledge), which is referred to 
as inverse problem. Two approaches are usually employed to in 
solving inverse problem: the most conventional optimization 
approach, and inverse modeling approach. For optimization 
approach, the forward models is iteratively evaluated to detect the 
faulty elements, such that the AUT matches the reference array (RA). 
The optimization stage is to detect the faults, which is usually 
repeated over and over again, thereby consumes excessive.  
 Inverse modeling method is the second approach to solving 
inverse problem [16]. The electrical parameters (radiation patterns, in 
this case) are given as inputs, while physical or geometrical 
information (elements position) are given as the corresponding 
outputs of the model. After the inverse model is obtained, it 
immediately provides the physical or geometrical parameters (faulty 
elements) with no need of evaluating the model iteratively for 
particular radiation patterns. This approach is faster than the 
traditional iterative process of optimization. However, the inverse 
model analytical formula or function is not easy to get. Thereby, ANN 
has been employed to learn the input-and-output relationship in 
inverse problem [18], [19]. 

Despite the high speed exhibited by inverse model, training 
the model very well is not an easy task in array diagnosis. This is 
because of the non-uniqueness problem that exist in the input-to-
output relationship. Non-uniqueness problem implies the different 
training samples with identical inputs having contradictory or 
conflicting output parameters. Another difficult issue is the various 
radiation patterns with comparable but non-identical input parameters 
having very wide gap difference in output values. This consequently 
causes ambiguity in both contradictory and non-contradictory 
samples. As a result of impossibility in training the NN to 
simultaneously map conflicting/contradictory parameters at the 
output for uniform input samples, the error in training and the 
accuracy of the model become large and low, respectively. This non-

uniqueness problem has been addressed in [20]. The contradictory 
samples are grouped according to derivative data via the forward 
model of the NN, so that each groups are with no contradictory or 
conflicting data problem. Multiple inverse models are developed 
depending on the divided data groups, and are then juxtaposed to 
formulate a full model. 
 This study aims at further simplification of the inverse 
modeling procedure and resolve the non-uniqueness problem in more 
automated and simpler manner for antenna array diagnosis. In low 
dimensional spaces, manual data division or segmentation and 
multiple sub-models training mitigate the non-uniqueness problem, 
while in high dimensional spaces, non-uniqueness problem becomes 
more complex as inputs and outputs increases. Manually segmented 
data does not lead to easy removal of the non-uniqueness issue. In 
addition, there are some difficult cases where conflicting data in short 
distance is higher than what the derivative information will 
differentiate. Furthermore, contradictory data can be of identical 
derivative symbols. In such situation, the symbol derivative 
information is insufficient to differentiate multiple contradictions, 
even after exhaustively making use of derivative information. 
Therefore, to solve the problem of non-uniqueness, a more systematic 
approach is needed. 
 This work employs a multivalued neural network (mNN)-
based inverse modeling method, which associates a group of radiation 
patterns with multiple group of physical or geometrical elements 
parameter for array diagnosis purpose. A physical or geometrical set 
of elements parameters is referred to as a value in our developed 
model. This developed mNN is designed to adapt multiple values for 
the model output. In addition, a training error function is proposed 
towards each training sample matching with single value of the 
developed inverse model, and other values are trained to match other 
contradictory samples. As such, our proposed neural network (NN) 
learns all training data via automatic redirection of the conflicting 
information into various values of our inverse model. Hence, the 
developed method resolves the non-uniqueness issue in a more 
automated and easier manner compared to previous NN inverse 
methods. Inverse modeling for the diagnosis of a 10 𝗑 10 antenna 
array configuration illustrations with failures demonstrate our 
method. This method decreases measurements sample remarkably, 

 
FIGURE 1. Geometry problem of array diagnosis. 
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making us to treat various important concerns such as energy 
consumption, processing complexity, and speed. The innovations and 
main contributions of this paper are summarized as follows: 
 

I. We present an optimal antenna array diagnosis method 
by means of multivalued neural network. The proposed 
method is able to solve the associated non-uniqueness 
problem (i.e. the problem of different training samples 
with identical inputs having contradictory outputs). It 
has lower training error and test error compared to the 
conventional direct inverse model. 

II. We proposed a training procedure and test error 
functions towards optimal antenna array diagnosis. 
They are tested with various electromagnetic radiation 
pattern acquired from a designed antenna array.  

III. Our low latency multivalued NN-based method 
provides accurate diagnosis of array in a simpler and 
automated way with reduced energy consumption and 
processing complexity. 

  
  

II. ANTENNA ARRAY DIAGNOSIS PROBLEM 
Antenna array diagnosis is considered a forward problem from 
physical or geometrical parameters to electrical parameters of the 
elements. Assuming m and n represent the inputs and outputs of the 
forward problem, respectively. Let y be m-vector with input 
information of the forward problem, which are the geometrical 
locations of elements in the array. Also, let 𝒘 be n-vector that 
contains the output information, which are the antennas radiation 
patterns. Hence, the forward problem is defined as  
 

 𝒘 = 𝒇(𝐲	) (1) 
 
 f is the relationship between the input and output of the forward 
problem. 

To ensure adequate antenna array diagnosis, we process the 
information in reverse direction in order to identify the location of 
faults from a specific radiation patterns. This is the inverse problem 
in which both the inputs and the outputs are the inversion of those in 
the forward problem.  
  

III. DIRECT INVERSE MODEL 
One of the technique available for solving inverse problem is inverse 
modeling. The inputs to the inverse model are the radiation patterns 
while the outputs are the location or position of the elements. Due to 
non-availability of mathematical formula for inverse input-output 
relationship, ANN thereby logically becomes an alternative because 
it is trainable and learns from inverse modeling data. ANN is trained 
by data gotten by swapping the input-output data from the forward 
problem in the direct inverse modeling approach [21]. Here, n and m 
denote number of inputs and outputs of inverse model of the array. 
Assuming x is an n-vector that contains the inputs to the inverse 
model, which are the radiation patterns. y is equally assumed to be the 

outputs of the inverse model, which are the location parameters of the 
elements. Hence, the direct NN inverse model is  
 

 𝒚(𝐱,𝝋) = 𝒇!𝟏(𝐱	) (2) 
  
as such 𝒇!𝟏 is the relationship that exist between the input and output 
of the inverse problem, 𝒚(𝐱,𝝋) denotes the NN with x as inputs and 
y as the outputs, and 𝝋 as the vector that contains the NN weights. 
The 𝝋 vector elements contains the bias values for entire neuron in 
each layer, and the weights values that links the neurons in each 
layers. 
 Direct inverse model is usually obtained via the process of 
training. The ith pair of training sample is (xi, bi), i ∈ 𝑷#, where 
subscript i defines the index of sample and 𝑷# denotes index set of 
the entire training samples. xi defines the ith samples of x. bi is the ith 
sample of y which corresponds to input bi. The traditional training 
error formula of the direct inverse modeling problem is given as 
  

 𝑬(𝝋) = 0
1
2

$∈𝑷!

‖𝒚(𝐱𝒊, 𝝋) − 𝒃$	‖(  
(3) 

 
𝒚(𝐱𝒊, 𝝋) is the output of NN for the input xi [22]. 
 For relatively easy inverse problem, for instance, the relationship 
between the input and the output is unique; here the model accuracy 
is high as the training is easy. In antenna array, there is an inverse 
input-to-output non-uniqueness problem in the relationship of 
training data (radiation pattern). A training error becomes larger as 
the model cannot be adequately trained.  
  Due to the impossibility of training an ANN model to 
simultaneously match many conflicting outputs values for the same 
input values, as such, the training error in Eqn. (3) remains large. 
Manual data division/segmentation is unable to easily solve the non-
uniqueness problem [20], [23]. Hence, an approach that solves the 
non-uniqueness problem is very important for proper antenna array 
diagnosis. 
 
IV. PROPOSED MULTIVALUED NN INVERSE MODEL 
Here, we develop a mNN inverse modeling approach to successfully 
associate a set of radiation patterns with multiple sets of array 
elements location/position. A set of position in the array is termed one 
element of our proposed inverse model. The multivalued NN is 
designed to contain multiple elements for output of the model. 
Against manual detection of contradictory data in training set, we use 
NN learning capability to redirect conflicting or contradictory 
information automatically into different values of the model 
proposed. We denote N to be the number of elements of our 
developed inverse model. Therefore, we proposed mNN model by 
repetition of the direct inverse model output in Eqn. (2) N times to 
become 
 

 𝒛)**(𝐱,𝝋) = [𝒚+,	𝒚(,	𝒚-,	𝒚., …𝒚*, ] (4) 
 
where 𝒛)**  is the MLP (multilayer perceptron) that represents the 
developed mNN inverse model. 𝒚/ denotes kth value of our inverse 
model for input x, 𝑘 = 1,2,3, … ,𝑁. Individual element 𝒚/	of the  
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developed mNN is an m-vector that contains geometry of each 
element defined in a direct way of inverse modeling technique. Figure 
2 shows a typical example of our proposed method. 

For easy representation of 𝒚/ via the proposed 𝒛)**, we 
can define a 𝑚× (𝑁 · 𝑚) matrix 𝑺/ which contains zeros every 
position except for (ℎ, (𝑘 − 1).𝑚 + ℎ)01 position, where the 
element is 1, for h = 1, 2, 3, … , m. Thereby, 𝒚/ can be computed 
from 
 

 𝒚𝒌 =	𝑺/ · 𝒛)**(𝐱,𝝋) (5) 
    k = 1, 2, 3, …, N. 
Due to the increase in the total outputs number of  𝒛)** to 𝑁 · 𝑚, the 
formula for training error in Eqn. (3) becomes unsuitable for mNN. 
Therefore, the brute force technique needed to resolve the training 
issue of mNN is to re-format all training data, where individual 
training sample containing all conflicting outputs for the same inputs. 
Conversely, for contradictories, in which input values are 
incompletely the same but very much alike, while the output values 
completely vary, the conflicting data are unable to be jointly re-
formatted. Data re-formatting technique fails in the training process 
of our inverse model. Thus, a new training error formula for the mNN 
𝒛)** is proposed, such that mNN can redirect conflicting and/or 
contradictory samples into other values of our developed inverse 
model, and learn the entire training data ignoring the complexity of 
detecting and sorting-out of the whole multivalued solutions. 
 
V.TRAINING PROCEDURE AND TEST ERROR 
FORMULAS OF THE DEVELOPED MNN INVERSE MODEL 
Making sure that the developed method is capable of learning 
contradictory and conflicting data within the training set, in a way that 
different elements of 𝒚/, for k = 1, 2, 3, … , N, able to map various 
contradictories for very similar or the same input x, therefore we 
present a new training error to be  
 

  
𝑬(𝜑) = 0𝐸$(𝜑)

$34!

 
 
 

 
(6) 

𝑃# denotes the index set of all the training samples and 𝑬𝒊(𝝋) 
represents the training error for the ith training sample defined as 

 
𝑬𝒊(𝝋) = G0

1
𝑒/,$(𝝋)

*

/6+

I

!+

 
 
(7) 

 
𝑒/,$(𝝋) represents the error between 𝒚/ and 𝒃$ as 
  

 𝑒/,$(𝝋) =
1
2
‖𝒚/ −	𝒃$‖(

=
1
2
‖𝑺/ · 𝒛)**(𝐱$ , 𝝋)

−	𝒃$‖( 

 
 
(8) 

   
   K = 1, 2, 3, … , N 
 
𝒚/ represents the kth value of our developed inverse model 
𝒛)**(𝐱$ , 𝝋) for input 𝐱$. If an element 𝒚/ of our developed model 
fits the training sample 𝒃$ correctly, this implies that the error 𝑒/,$(𝝋) 
of this particular element is infinitesimal. The infinitesimal error 
𝑒/,$(𝝋) of an element results in an infinitesimal value in the 
developed total error function 𝑬𝒊(𝝋) of Eqn. (7) for the ith sample. 
Concurrently, the 𝑒/,$(𝝋) for all other elements are large, implying 
the remaining elements are free and maybe different from the present 
training sample 𝒃$. Hence, the developed error formula 𝑬𝒊(𝝋) of 
Eqn. (7) tailored towards matching of the training sample with one of 
the elements of mNN model that is the nearest to the present training 
sample and neglecting other elements.  

The ANN weights 𝝋 are initially conditioned to be small 
numbers [23], at the start of the training process. We applied quasi-
Newton optimization method to reduce training error presented in 
Eqn. (6) where 𝝋 are the variables of optimization. ANN weights 𝝋 
are updated during training process by optimization. 

After the successful training, the inverse model test is 
performed via test data.  Due to the fact that our proposed inverse 
model is designed to handle multiple parameters or values for the 
output of the model, the traditional function presented in Eqn. (3) is 
unsuitable for the model. Hence, we present a test error formula 
appropriate for the developed mNN inverse model is 

 
  𝑷(𝝋) = 0min

/
{
1
2

$∈4"

‖𝒚/ − 𝒃$‖(} 

 

= 0min
/
{
1
2

$∈4"

‖𝑺/ · 𝒛)**(𝐱$ , 𝝋)

− 𝒃$‖(}	 
                     k = 1, 2, 3,… , N 
 

 
 
 
 
(9) 

𝑃7 denotes the index set for all the test samples. Using the developed 
test error formula in Eqn. (9), we compute the error for all the 
elements of the proposed inverse model, and of cause, the nearest 
element to the test data was selected for the total error test 
computation. In addition, the error formula generates a metrics to test 
error compatibility to the traditional NN of Eqn. (3). 
 

 
FIGURE 2. mNN inverse modeling towards accurate and efficient 

antenna array diagnosis. 
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VI. PROPOSED FAULT DETECTION IN ANTENNA 
ARRAYS 
To ensure accurate inverse model, the number of elements in the array 
N of mNN should be the same as the total number of possible faults 
within training data for all inputs. Conversely, following the 
successful NN training using the error functions: Eqns. (6), (7), and 
(8), the number of faults which is usually not the same as N for a 
specific input in practice. Therefore, all NN inverse model values are 
accurate. The number of possible faults are lower than N. In this case, 
the N elements given by our developed inverse model indicates some 
elements as normal while some as faulty. Since mNN always give N 
output values of the model for a specific input, there is a need to come 
up with a technique to differentiate normal elements from the faulty 
elements in the entire elements 𝒚/  for k = 1, 2, 3, … , N.  

Here, we use forward model to decide the normal elements. 
Each 𝒚/ from our inverse model acts as inputs to the forward model 
in Eqn. (1), k = 1, 2, 3, … , N. At the end of the computation of 
forward model, then we obtain N output. 𝑤/ defines the forward 
model output for 𝒚/, k = 1, 2, 3, … , N. The forward model output w 
and the inverse model input x exhibit the same parameters. 
Apparently, the errors 𝑬8 that exist between 𝑤/ and x for various 𝒚/ 
informs us which elements are faulty and which elements are normal 
in the array. 𝑬8(𝒚/) can then be expressed as 
 

 𝑬8(𝒚/) = ‖𝒘𝒌 − 𝐱‖ (10) 
 
where 𝒘𝒌 = 𝒇(𝒚/), k = 1, 2, 3, … , N and 𝒇(·) defines our forward 
model in Eqn. (1), 𝒚/ as input, and 𝒘𝒌 as output.  
 

If   
 𝑬8(𝒚/) = ‖𝒇(𝒚𝒌) − 𝐱‖ ≤ 𝛽 (11) 

 
is satisfied, 𝒚/ is the normal element. 𝛽 is a constant predefined here.  
 
If  

 𝑬8(𝒚/) = ‖𝒇(𝒚𝒌) − 𝐱‖ > 𝛽 (12) 
 
𝒚/ is referred to as the faulty element. 
 
 
Let index set of valid values be denoted as V, then 
 

 𝑉 = {𝑘|𝑬8(𝒚/) 	≤ 𝛽; 𝑘 = 1, 2, 3, … ,𝑁} (13) 
 
 
Hence, the normal elements for mNN inverse model is given as 
  

 𝑦 ∈ {𝒚/|𝑘 ∈ 𝑉} (14) 
 
The detection of faulty and normal elements of the developed inverse 
model is diagrammatically demonstrated in Figure 3. The statistical 
measures calculated herein for the evaluation of the multivalued 
ANN performance are the reconstruction error expressed as 
 

 𝜉 = 100 ×
∑ |𝑦/ − 𝑦Z/|(9
/6+

∑ |𝑦/|(9
/6+

  
(15) 

 

 
FIGURE 3. Fault detection technique of the proposed multivalued NN inverse model. 
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where 𝑦/ and 𝑦Z/ are the real and predicted failure of y, respectively. 
Given this relationship, performance analysis is easily conducted.  
Figure 4 show the reconstruction error versus SNR for different 
number of failures Vf. The reconstruction error 𝜉 is high when SNR 
is low for any number of failure Vf, of failures Vf. The reconstruction 
error 𝜉 is high when SNR is low for any number of failure Vf, while 
there is better performance at higher SNR for all number of failure.  
We also tested the effect of failure rate on the performance of the 
technique by plotting reconstruction error against the number of 
failures in Figure 5. As expected, the performance decreases with 
higher number of failed elements. Figures 6 and 7 show the plot of 
reconstruction error against the measurements for different SNR and 
failure, respectively. Reconstruction error decreases when there is 
increase in the measurements. Low SNR leads to higher error, and 
low failure leads to low error. All the results show how reasonable 
our method is, for antenna array diagnosis.  
 
VII.NUMERICAL EXPERIMENT, RESULTS AND 
DISCUSSION 
The radiated field of the array with N elements can be expressed as: 
 

 
𝐸[⃗ = 0𝑎:𝐸[⃗:

*

:6+

= 0𝑞:𝑒!;<#𝐸[⃗:

*

:6+

 
 
(16) 

 
good condition is depicted in Fig. 9. In this work, the maximum 
number of faults considered is where 𝐸[⃗: denoted the normalized field 
of the nth element and 𝑎: is the corresponding complex excitation 
with amplitude 𝑥: and phase 𝜙:, respectively. The change in 
amplitude Δ𝑞: = 𝑞:

=>? − 𝑞:)@, is the amplitude of the nth element. 
We made a hypothesis that few numbers of elements are faulty. This 
is usually true in practice because AUT diagnosis should be 
conducted when AUT performance is degraded. Only two element 
excitation states are considered (i.e. normal operation and total 
failure). 

Failure of element (s) in antenna array causes field intensity 
variation across the aperture of the array, leading to increase in ripple 
level and sidelobe of the radiation pattern. From the perspective of 
faulty element in antenna array, it is observed that the size and 
number of sidelobes and generally the power pattern depends on the 
position and number of faulty elements in array. It is equally 
important to note that faulty elements have effect on the total array 
radiation pattern. Increase in number of faults causes increase 

variation in radiation pattern. The task here is to generate a mapping 
between distorted radiation pattern and corresponding element 
position in the array. The proposed MLP performs the task. The mNN 
inverse model takes in radiation patterns as input and provides the 
position of faulty elements as output.  

In this paper, we demonstrate the effectiveness of our 
proposed inverse modeling method in the absence of experimental  
facility. A real failed element in antenna array is not performed, but 
simulated. We consider 100 elements made up of an open-ended 
waveguide 10 𝗑 10 WR90 array operating at 27 GHz as shown in 
Figure 8, and the simulated radiation pattern with no element failure 
at 𝜙 = 08 principal plane. The array is of 24.88 𝗑 12.18 mm2 aperture 
size and is uniformly spaced in both x and y directions by 𝜆 and 𝜆/2, 
respectively. The popular full wave EM software Ansys HFSS v.19 
was used to compute the radiation pattern of the array. Here, it may 
be stated that the application of ANN in this work includes the mutual 
coupling effect.  
  At first, all the elements N are equally excited to emulate 
reference array (i.e. array without failure). After, V number of random 
failures in the amplitude excitation are initiated in order to emulate 
and model the AUT, and the corresponding radiation patterns were 
evaluated in the same 𝜙 = 08principal plane, as all the elements in 
good condition. The radiation pattern in 𝜙 = 08 principal plane with 
all elements in five. The same technique can be extended to higher 
number of faults. However, in real situation, the probability of such 
high number of failure is very low. Also in practice, measurements 
are usually corrupted by noise; hence, a Gaussian noise is added to 
the patterns, such that the noise level is decided by signal-to-noise 
ratio (SNR). The SNR is estimated from maximum magnitude of the 
received signal fit with dynamic measurement range. Therefore, noise 
can be expressed as 
 

 𝒏 =
ℕ(0,1) + 𝑗ℕ(0,1)

√2
	𝑚𝑎𝑥|𝒚|. 10!A*=$% (8⁄  (17) 

 
where ℕ(0,1) denotes Gaussian random vector of 0 mean and 1 
standard deviation.  
 
A) Data Generation  

We generated training data by simulation of radiation patterns for 
random location of non-radiating elements (i.e. failures) with one, 
two, three, four, and five element faults. Then the radiation patterns 
were sampled. The sampling of radiation pattern is justified, since it  

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑚!! 𝑚!" 𝑚!# 𝑚!$ 𝑚!% 𝑚!& 𝑚!' 𝑚!( 𝑚!) 𝑚!,!+
𝑚"! 𝑚"" 𝑚"# 𝑚"$ 𝑚"% 𝑚"& 𝑚"' 𝑚"( 𝑚") 𝑚",!+
𝑚#! 𝑚#" 𝑚## 𝑚#$ 𝑚#% 𝑚#& 𝑚#' 𝑚#( 𝑚#) 𝑚#,!+
𝑚$! 𝑚$" 𝑚$# 𝑚$$ 𝑚$% 𝑚$& 𝑚$' 𝑚$( 𝑚$) 𝑚$,!+
𝑚%! 𝑚%" 𝑚%# 𝑚%$ 𝑚%% 𝑚%& 𝑚%' 𝑚%( 𝑚%) 𝑚%,!+
𝑚&! 𝑚&" 𝑚&# 𝑚&$ 𝑚&% 𝑚&& 𝑚&' 𝑚&( 𝑚&) 𝑚&,!+
𝑚'! 𝑚'" 𝑚'# 𝑚'$ 𝑚'% 𝑚'& 𝑚'' 𝑚'( 𝑚') 𝑚',!+
𝑚(! 𝑚(" 𝑚(# 𝑚($ 𝑚(% 𝑚(& 𝑚(' 𝑚(( 𝑚() 𝑚(,!+
𝑚)! 𝑚)" 𝑚)# 𝑚)$ 𝑚)% 𝑚)& 𝑚)' 𝑚)( 𝑚)) 𝑚),!+
𝑚!+,! 𝑚!+," 𝑚!+,# 𝑚!+,$ 𝑚!+,% 𝑚!+,& 𝑚!+,' 𝑚!+,( 𝑚!+,) 𝑚!+,!+⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

       (18) 
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FIGURE 4. Reconstruction error versus SNR for different number of failure.     FIGURE 5. Reconstruction error versus number of failure for different SNR. 
 
 
 
 

       
FIGURE 6. Reconstruction error versus measurements for different SNR.       FIGURE 7. Reconstruction error versus measurements for different number of failure. 

 
 
 

 
FIGURE 8. HFSS-based open ended 10 𝗑 10 waveguide array for the diagnostic demonstration. 
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FIGURE 9. 10 𝗑 10 array simulated radiation pattern with no element failure at 

𝜙 = 0& principal plane. 
 

TABLE I. TRAINING PARAMETERS 
Parameter Value 

Number of input neurons 46 
Number of output neurons 5 
Number of hidden layers 1 

Number of hidden neurons 17 
Learning rate 0.05 

Training Time 35 minutes 

 
TABLE II. MODELING RESULTS VIA DIFFERENT INVERSE MODELING TECHNIQUES FOR 
10 𝗑 10 ANTENNA ARRAY 

Inverse Modeling Approach Training 
Error (%) 

Test Error 
(%) 

Direct inverse modeling approach 6.01 5.82 
mNN based inverse modeling 3.34 3.98 

mNN based inverse modeling with 2 faults 2.79 3.13 
mNN based inverse modeling with 3 faults 2.42 2.76 
mNN based inverse modeling with 4 faults 2.18 2.41 
mNN based inverse modeling with 5 faults 1.88 2.05 

Note: Both training error and test error in the mNN inverse modeling based approach are 
computed using Eqn. (9), for common ground comparison with errors in the direct inverse 

modeling approach 

 
is impossible to get the whole distorted pattern at the base station for 
an antenna array in space. Because principal plane provide us 
sufficient information to obtain substantial results [25]-[27], samples 
were taken from the pattern in the principal plane 𝜙 = 08. 46 samples 
were taken in the interval of 20 in xy and yz plane from each radiation 
pattern to formulate the input data set for training. The corresponding 
position of faulty element (s) is the output data. This implies the 
output data is a matrix M which consists of 𝑚$; elements. Different 
approaches of selecting output data to identify faults is possible and 
depends on the user. For the current consideration, the output matrix 
M is defined as Eqn. (18). HFSS and MATLAB softwares were used 
for data generation and implementation of the mNN, respectively. 
The simulation is conducted with both softwares installed on personal 
HP PAVILION laptop computer (1-TB memory, 16G RAM, and 
Intel core i7-8565U CPU @1.80GHz 1.99 GHz). 
 
B) Training of Network 
Here, we trained the MLP (in conjunction with Eqn. (4)) in 
backpropagation mode, because of its capability for forming mapping 
implementations. According to the weight updation of 
backpropagation training algorithm is 
  

 𝝋/$C+ =	𝝋/$ − 𝜂
𝜕𝑬8(𝒚/)
𝜕𝝋/

 (19) 

where 𝑬8(𝒚/) is the error function, which determines the state of 
element at kth instant, 𝜂 is the learning rate. The ANN learns from 
input-to-output data. In this present consideration, radiation pattern 
was simulated for all 2811 possible combination of faults i.e. total 
number of samples for training is 2811. We trained with all the 
samples since the effectiveness of the network depends on the 
training. Obtaining the samples took us about two days, which is a lot 
of time. For 𝛽 = 2, y1 is selected as the normal and y2 as the fault. 
Therefore, our proposed normal value selection process distinguishes 
the valid value(s) from the fault value(s).  The regularization 
technique is adopted in order to avoid possible overfitting and to 
improve network generalization. 

Training parameters determine the effectiveness of 
training. The training parameters and values used for the training of 
this network are summarized in Table I. At the end of the training, the 
training error and test error are depicted in Table II. As shown, even 
though we attempted to train the conventional or traditional direct 
inverse model with sufficient training iterations and hidden neurons, 
the training and test errors are always large because of non-
uniqueness problem. We tested the trained network for the results. 
The outputs of the network are rounded off to determine the number 
of faulty elements and corresponding position. For instance, a 
raw output of 0.2385, after rounding off to two significant 
number give the value 0.24 representing the fault in the 𝑚"$ 
in the entire array. The results of typical fault patterns are 
shown in Figure 10. In all cases considered the output of the 
network matches with simulation results. 

This method provides good, reliable, and accurate antenna 
array diagnosis at 20 dB. This is a useful feature, particularly in very 
harsh measurement environment. Also, our method require fewer 
numbers of measurements for diagnosis after training. Since the 
speed of diagnosis depends on the number of measurements, the 
proposed method offer faster diagnosis. In addition, after the 
successful training, which usually takes time, our system performs 
diagnosis in less than 5 second thereby reduced energy consumption 
and processing complexity. The proposed method can work at any 
pointing direction (beam steering), as long as the measurement or 
samples can be taken at the principal plane. The proposed algorithm 
is not direction dependent.  

Although the training is time consuming, but this is not 
significant compared to measurement time cost required by matrix 
inversion [4], genetic algorithm [1], exhaustive search [3], and even 
CS [7]. The training is done once and for all, before installation on 
the base station. After the successful training, the diagnosis or fault 
detection is performed in much simpler and automated way. 

In addition, due to the intelligence of this system, it has 
another advantage of performing real-time antenna array diagnosis. 
The availability of real-time antenna diagnosis is an asset, particularly 
when the replacement and manual disassembling operations are 
costly and consume excessive time, and in the satellite-borne 
installations. Therefore, recalibration of feeding network is more 
convenient to reinstate the radiation features via elements excitation 
reconfiguration. 



 O. J. Famoriji et al. 

 

 VOL. 10, NO. 3, DECEMBER 2021 66 

 

 
(a) 

 

 

 
(b) 
 

FIGURE. 10 [a, b]. Radiation pattern of fault (s) and corresponding multivalued ANN output in the insets. (a) Radiation pattern with single element 
(𝑚'() fault (b) Radiation pattern with double elements (𝑚)*, 𝑚*+) fault. 

 
 
 
 
 

 mANN raw output: 0.3580, 0.0002, 0.0001, 0.0007, 0.0010 

Post-processing output: 0.36, 0, 0, 0, 0 

(m36 element is faulty) 

 
mANN raw output: 0.2780, 0.8070, 0.0010, 0.0030, 0.0030 

 
Post-processing output: 0.28, 0.81, 0, 0, 0 

 
(m28 and m81 are faulty) 
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(c) 

 

 

 
(d) 

FIGURE 10 [c, d]. Radiation pattern of fault (s) and corresponding multivalued ANN output in the insets. (c) Radiation pattern with three elements 
(𝑚),, 	𝑚-., 𝑚.-) faults (d) Radiation pattern with four elements (𝑚/', 𝑚*+, 𝑚*/, 𝑚.() fault. 

 
 
 
 
 
 

 mANN raw output: 0.2400, 0.7880, 0.9690, 0.0070, 0.0010 
 

Post-processing output: 0.24, 0.79, 0.97, 0, 0 
 

(m24, m79, and m97 are faulty) 
 

 mANN raw output: 0.5280, 0.8060, 0.8490, 0.9570, 0.0030 
 

Post-processing output: 0.53, 0.81, 0.85, 0.96, 0 
 

(m53 m81, m85, and m96 are faulty) 
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          (e) 

 

 

 
(f) 

FIGURE 10 [e, f]. Radiation pattern of fault (s) and corresponding multivalued ANN output in the insets. (e) Radiation pattern for four elements 
(𝑚'., 𝑚',+&, 𝑚-', 𝑚..) faults (f) Radiation pattern for five element (𝑚)(, 𝑚,., 𝑚(*, 𝑚*/, 𝑚+&,+&) faults. 

 

 
 
 
 
 

 mANN raw output: 0.3900, 0.31000, 0.7280, 0.9870, 0.0060 
 

Post-processing output: 0.39, 0.310, 0.73, 0.99, 0 
 

(m39, m3,10, m73, and m99 are faulty) 
 

 mANN raw output: 0.2580, 0.4880, 0.6770, 0.8500, 0.10100 
 

Post-processing output: 0.26, 0.49, 0.68, 0.85, 0.1010 
 

(m26, m49, m68, m85, and m10,10 are faulty) 
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VIII CONCLUSION 
In conclusion, an antenna array diagnosis method by means of 
multivalued inverse model has been presented. Our proposed inverse 
modeling method is able to solve the non-uniqueness problem, which 
is difficult for the direct inverse modeling method. We proposed a 
training procedure and test error functions towards optimal antenna 
array diagnosis. They are tested with various electromagnetic 
radiation patterns acquired from a designed antenna array, and the 
results obtained have good agreement with simulation results. In 
addition, we have applied our method to perform radiating planar 
structure diagnosis but can be extended to conformal antennas. The 
results confirm that the proposed method allows remarkable decrease 
in the required measurements for array diagnosis after the successful 
training. Although, the time taken in training the system might be 
long, but it takes few seconds to post-process in all cases, thereby, 
offers fast and accurate diagnosis with reduced complexity and lower 
computational burden. The proposed network finds application at the 
base stations in investigating the number and position of faults in 
antenna array, from the distorted radiation pattern caused by non-
radiating elements. 
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