Electromagnetic field in matter. Surface enhanced Raman scattering

Main Article Content

M. Apostol
S. Ilie
A. Petrut
M. Savu
S. Toba

Abstract

The polarization and magnetization degrees of freedom are included in the general treatment of the electromagnetic field in matter, and their governing equations are given. Particular cases of solutions are discussed for polarizable, non-magnetic matter, including quasi-static fields, surface plasmons, propagation, zero-point fluctuations of the eigenmodes, especially for a semi-infinite homogeneous body (half-space). The van der Waals London-Casimir force acting between a neutral nano-particle and a half-space is computed and the response of this electromagnetically coupled system to an external field is given, with relevance for the surface enhanced Raman scattering.

Downloads

Download data is not yet available.

Article Details

How to Cite
Apostol, M., Ilie, S., Petrut, A., Savu, M., & Toba, S. (2013). Electromagnetic field in matter. Surface enhanced Raman scattering. Advanced Electromagnetics, 2(2), 31-40. https://doi.org/10.7716/aem.v2i2.169
Section
Research Articles
Author Biographies

M. Apostol, Institute for Atomic Physics, Magurele-Bucharest Romania

Theoretical Physcs, Professor

S. Ilie, MiraTechnologies. Ltd, Romania

Electrical Engineer

A. Petrut, MiraTechnologies, Ltd, Romania

Electrical Engineer

M. Savu, MiraTelecom, Ltd, Romania

Chemical Engineer

S. Toba, MiraTechnolgies, Ltd, Romania

Physicist

References


  1. P. Drude, Zur Elektronentheorie der Metalle, Ann. Phys. 306: 566-613, 1900.
    View Article

  2. P. Drude, Zur Elektronentheorie der Metalle, 2. Teile. Galvanomagnetische und thermomagnetische Effecte, Ann. Phys. 308: 369-402, 1900.
    View Article

  3. H. A. Lorentz, The Theory of Electrons, Teubner, Leipzig, 1916.

  4. L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 2 (The Classical Theory of Fields), Butterworth-Heinemann, Oxford, 2003.

  5. J. Schwinger, L. L. deRaad, Jr., K. A. Milton and W. Tsai, Classical Elctrodynamics, ABP, Westview Press, Boulder, Co., 1998.

  6. J. A. Stratton, Electromagnetic Theory,McGraw-Hill, Cambridge,Mass., 1941.

  7. M. Schwartz, Principles of Electrodynamics, Dover, NY, 1987.

  8. J. D. Jackson, Classical Electrodynamics, Wiley, NJ, 1998.

  9. L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 8 (Electrodynamics of Continuous Media), Butterworth-Heinemann, Oxford, 2004.

  10. M. Apostol and G. Vaman, Electromagnetic field interacting with a semi-infinite plasma, J. Opt. Soc. Am. A 26: 1747-1753, 2009.
    View Article

  11. M. Apostol and G. Vaman, Reflection and refraction of the electromagnetic field in a semi-infinite plasma, Opt. Commun. 282: 4329-4332, 2009.
    View Article

  12. M. Apostol and G. Vaman, Plasmons and diffraction of an electromagentic plane wave by ametallic sphere, Progr. Electrom., Res. (PIER) 98: 97-118, 2009.

  13. M. Apostol, On the molecular forces acting between macroscopic bodies, Physica B 409: 57-62, 2013.
    View Article

  14. M. Apostol, Non-inertial electromagnetic effects in matter. Gyromagnetic effect, Solid State Commun. 152: 1567-1571, 2012.
    View Article

  15. M. Apostol, S. Ilie, A. Petrut, M. Savu and Stefan Toba, A generalization of the dipolar force, J. Appl. Phys. 12: 024905, 2012.
    View Article

  16. B. F. Apostol, Scattering of the electromagneticwaves from a rough surface, J. Mod. Phys. 59: 1607-1616, 2012.

  17. C. J. F. Bottcher, Theory of Electric Polarisation, Elsevier, Amsterdam, 1952.

  18. P. P. Ewald, Uber die Grundlagen der Kristalloptik, Thesis, Munich, 1912, Ann. Phys. 49(354): 1-38, 1916.

  19. C. W. Oseen, Uber die Wechselwirkung zwischenzwei elektrischen Dipolen der Polarisationsebene in Kristallen und Fluessigkeiten, Ann. Phys. 48(353): 1-56, 1915.
    View Article

  20. M. Born and E.Wolf, Principles of Optics, Pergamon, London, 1959.

  21. M. Apostol, Essays in Electromagnetism and Matter, Lambert, Saarbrucken, 2013.

  22. Z. Q. Tian, Surface-Enhanced Raman Spectroscopy: It's Present Status, The Internet Journal of Vibrational Spectroscopy 4: ed 2, 2000.

  23. P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton and J. C. Gallop, Electromagnetic contribution to surface enhanced Raman scattering revisited, J. Chem. Phys. 119: 5281-5289, 2003.
    View Article

  24. M. Moskovits, Surface-Enhanced Raman Spectroscopy: a Brief Perspective, in Surface-Enhanced Raman Scattering, Topics in Applied Physics, vol. 103, pp. 1-17, eds K. Kneipp, M. Moskovits and H. Kneipp, Springer, 2006.
    View Article

  25. J. R. Lombardi and R. L. Birke, A unified approach to surface-enhanced Raman spectroscopy, J. Phys. Chem. C 112: 5605-5617, 2008.
    View Article

  26. B. D. Alexander and T. J. Dines, Chemical interactions in the surface-enhanced resonance Raman scattering of ruthenium polypyridyl complexes, J. Phys. Chem. B 109: 3310-3318, 2005.
    View Article

  27. D. A. Long, The Raman effect: a unified treatment of the theory of Raman scattering by molecules, Wiley, London, 2002.

  28. W. E. Smith and G. Dent, Modern Raman Spectroscopy - A Practical Approach,Wiley, NJ, 2005.