Broadband impedance spectroscopy of some Li+ and Vo** conducting solid electrolytes

Main Article Content

A. F. Orliukas
O. Bohnke
A. Kežionis
S. Kazlauskas
V. Venckutė
D. Petrulionis
T. Žukauskas
T. Šalkus
A. Dindune
Z. Kanepe
J. Ronis
V. Kunigelis

Abstract

The solid electrolyte Li3Ti1.5(PO4)3 compound has been synthesized by solid state reaction and studied by X-ray diffraction. At room temperature the compound belongs to rhombohedral symmetry (space group R3 ̅c) with six formula units in the unit cell. Li3Ti1.5(PO4)3, Li3xLa2/3–xTiO3 (where x = 0.12) Li+-ion conducting, Ce0.8Gd0.2O1.9, (ZrO2)92(Y2O3)8 with fast oxygen vacancy transport ceramic samples were investigated in the frequency range from 1 Hz to 3 GHz in the temperature interval (300-700) K by impedance spectroscopy methods. Two dispersion regions in ionic conductivity spectra for investigated ceramic samples have been found. The dispersions have been attributed to relaxation processes in grain boundaries and in grains of the ceramics.

Downloads

Download data is not yet available.

Article Details

How to Cite
Orliukas, A., Bohnke, O., Kežionis, A., Kazlauskas, S., Venckutė, V., Petrulionis, D., Žukauskas, T., Šalkus, T., Dindune, A., Kanepe, Z., Ronis, J., & Kunigelis, V. (2012). Broadband impedance spectroscopy of some Li+ and Vo** conducting solid electrolytes. Advanced Electromagnetics, 1(1), 70-75. https://doi.org/10.7716/aem.v1i1.16
Section
Research Articles

References


  1. A.G. Belous, G.N. Novitskaya, S.V. Polyanetskaya, Y.I. Gornikov, The crystal-chemical and electrophysical characteristics of the complex oxides Ln2/3-xM3xTiO3, Russian J. Inorg. Chem. 32: 156–157, 1987.

  2. Y. Inaguma, Ch. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate, Solid State Commun. 86: 689–693, 1993.
    View Article

  3. J.L. Fourquet, H. Duroy, M.P. Crosnier-Lopez, Structural and microstructural studies of the series La2/3–xLi3x□1/3–2xTiO3, J. Solid State Chem. 127: 283–294, 1996.
    View Article

  4. O. Bohnke, J.-C. Badot, J. Emery, Broadband dielectric spectroscopy study of Li+ ion motions in the fast ionic conductor Li3xLa2/3–xTiO3 (x = 0.09); comparison with 7Li NMR results, J. Phys. Condens. Matter 15: 7571–7584, 2003.
    View Article

  5. K. Arbi, J.M. Rojo, J. Sanz, Lithium mobility in titanium based Nasicon Li1+xTi2–x(PO4)3 and LiTi2–xZrx(PO4)3 materials followed by NMR and impedance spectroscopy, J. Eur. Ceram. Soc. 27: 4215–4218, 2007.
    View Article

  6. H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate, J. Electrochem. Soc. 137: 1023–1027, 1990.
    View Article

  7. P. Bohac, A. Orliukas, L. Gauckler, An improvement of the SOFC performance by electrolyte doping, Proc. First European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, Vol. 2 pp. 651–660, 1994.


  8. O. Bohnke, The fast lithium-ion conducting oxides Li3xLa2/3–xTiO3 from fundamentals to application, Solid State Ionics 179: 9–15, 2008.
    View Article

  9. A. Kežionis, E. Kazakevičius, T. Šalkus, A. Orliukas, Broadband high frequency impedance spectrometer with working temperatures up to 1200 K, Solid State Ionics 188: 110–113, 2011.
    View Article

  10. A.Orliukas, P. Bohac, K. Sasaki, L.J. Gauckler, The relaxation dispersion of the ionic conductivity in cubic zirconias, Solid State Ionics 72: 35–38, 1994.
    View Article

  11. A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, Relaxation dispersion of ionic conductivity in a Zr0.85Ca0.15O1.85 single crystal, J. Europ. Ceramic Soc. 12: 87–96, 1993.
    View Article

  12. R. Sobiestianskas, A. Dindune, Z. Kanepe, J. Ronis, A. Kežionis, E. Kazakevičius, A. Orliukas, Electrical properties of Li1–xYyTi2–y(PO4)3 (where x, y = 0.3; 0.4) ceramics at high frequencies, Materials science and engineering B 76: 184–192, 2000.
    View Article

  13. T. Šalkus, A. Dindune, Z. Kanepe, J. Ronis, A. Určinskas, A. Kežionis, A.F. Orliukas, Lithium ion conductors in the system Li1+yGe2−x−yTixAly(PO4)3 (x = 0.1÷0.3, y = 0.07÷0.21), Solid State Ionics 178: 1282–1287, 2007.


  14. A.F. Orliukas, T. Šalkus, A. Dindune, Z. Kanepe, J. Ronis, A. Určinskas, E. Kazakevičius, A. Kežionis, V. Kazlauskienė, J. Miškinis, Synthesis, structure and electrical properties of Li1+x+yScxYyTi2−x−y(PO4)3 (x=0.15–0.3, y=0.01–0.15) ceramics, Solid State Ionics 179: 159–163, 2008.
    View Article

  15. T. Šalkus, E. Kazakevičius, A. Kežionis, A. Dindune, Z. Kanepe, J. Ronis, J. Emery, A. Boulant, O. Bohnke, A.F. Orliukas, Peculiarities of ionic transport in Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics, J. Phys.: Condens. Matter 21: 185502 (7pp), 2009.
    View Article

  16. M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, G. Kostorz, H. Hofmann, O. Frei, Effect of intergranular glass films on the electrical conductivity of 3Y-TZP, J. Mater. Res. 9: 1228–1240, 1994.
    View Article