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ABSTRACT The paper presents the results of constructing the physical and mathematical model of high-
frequency electromagnetic waves propagation in slowly moving media of finite dimensions, which takes
into account the phenomena of specular reflection of these waves. The constructed model is based on
eqations designed to determine the speed of electromagnetic waves propagation in slowly moving media
of finite dimensions, as well as on equations designed to describe these waves. The feature of these
equations lies in the fact that they take into account the Fresnel drag coefficient for electromagnetic waves
propagation speed, while the speed of the media isn’t constant, it can depend on time and coordinates.
An approach to these equations solving has been developed, as well as an approach to modeling the process
of electromagnetic waves propagation in slowly moving media of finite dimensions, based on the use
of a difference scheme, in which the motion of these media is taken into account using infinitesimal Lorentz
transformations in a difference cell. It has been determined that the developed model and approaches can be
used to solve problems associated with the construction of transmitting and receiving paths of radio
communication systems and information transmission through moving plasma streams, gas clouds,
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macroscopic plasma clots, as well as in solving problems of aeroacoustics.

INDEX TERMS Propagation medium, Electrodynamics, Electromagnetic wave.

I. INTRODUCTION

I HE relativity theory in combination with Maxwell’s

equations was the foundation for the electrodynamics
of moving medium. Indeed, the equations for the
electromagnetic field in a moving medium can be derived
intwo ways. On the one hand, they can be obtained
by averaging the microscopic equations of the electron
theory, when all particles that make up the medium have
a speed of ordered motion. On the other hand, the equations
of a macroscopic electromagnetic field in a moving medium
can be obtained using the Lorentz transformations from
the known field equations for a medium at rest.
G. Minkowski took the second path, showing that the
equations of the electromagnetic field for moving medium
unambiguously follow from Maxwell’s equations for
medium at rest and the relativity principle [1].

From a practical point of view, the theory
of electromagnetic phenomena in slowly moving medium,
i.e., the theory that can be applied to solve problems in which

L3 (u — medium speed, ¢ — light speed in vacuum) and
c

in which all processes, the parameters of which are

proportional to the square and higher powers of the ratio —
c

can be neglected. These tasks belong to such areas
of practical ~ activity as the development, tuning
and improvement of transceiver devices for radio
communication systems, radio lines for transmitting
information through streams of plasma and gas clouds
created by jet rocket engines (solid and liquid propellants) [2].
At high-current plasma accelerators, it is already possible
to obtain macroscopic plasma bunches moving as a whole
with velocities of 108 cm/s and higher. To simulate
electromagnetic waves interaction with these objects, it’s
necessary to use the electrodynamics of moving medium.
Such phenomena as, for example, the motion of plasma
in a magnetic field, the propagation of self-focusing beams
of charged particles, the properties of a superhigh current
discharge  channel = have  become commonplace
for the electric power industry (especially in connection
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with the problem of thermonuclear energy and are based
on the concept of a macroscopic electromagnetic field

in moving medium) [3].

In addition, in the so-called decelerating systems,
electromagnetic waves propagation speed ¢’ can be
significantly less than the speed ¢ in vacuum. An example
of such systems is a waveguide partially filled with
adielectric, a spiral waveguide, etc. In this case,
the determining  relativistic effect of the motion

of amedium is not a relation —, but a relation —.
c c

The indicated effects are important for diagnostics
of moving medium by their interaction  with
electromagnetic waves, for example, generation, reflection
and refraction of waves in the presence of moving layers
of the ionosphere [4].

These tasks are also relevant for such area of practical
activity as aerodynamic sound generation.

In connection with the above, the aim of this work was
to build a consistent physical and mathematical model
of high-frequency electromagnetic waves propagation
in slowly moving medium of finite dimensions, when
the speed of the latter depends on coordinates and time.

To achieve this aim, the following tasks have been solved:

- the list of conditions and basic equations for building
the model have been determined;

- the numerical algorithm for determining
of electromagnetic waves propagation speed in slowly
moving medium of finite dimensions has been proposed;

-equations to  describe electromagnetic = waves
propagating in slowly moving medium of finite dimensions,
taking into account the Fresnel drag coefficient for the
speed of such waves have been proposed;

- the approach to the numerical solution of the proposed
equations has been developed;

- the approach to modeling the process of electromagnetic
waves propagation in slowly moving medium of finite
dimensions has been developed using the infinitesimal
Lorentz transformations in the difference cell;

-recommendations for the practical application
of the constructed model have been developed.
Consideration of some  nonrelativistic  effects,

for example, the phenomena of generation, reflection,
and refraction of waves in the presence of moving layers
inthe propagation medium of these waves, is also
of considerable practical interest.

Il. ANALYSIS OF APPLICABILITY OF MAXWELL’S

EQUATIONS AND MINKOWSKI'S MATERIAL
EQUATIONS OF ELECTRODYNAMICS OF MOVING
BOUNDARY MEDIUM IN THE ELECTRODYNAMICS OF
MOVING INHOMOGENEOUS LAYERED STRUCTURES
As it’s known, to use the basic relations of electrodynamics
of unlimited medium moving at a constant speed, it’s
necessary to fulfill a number of conditions, which are given
below [5].
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Condition 1. The independence of the medium properties
in the rest frame from coordinates and time (i.e., the medium
is stationary and spatially homogeneous).

Condition 2. The constancy of the of medium movement
speed and the independence of this speed from coordinates
and time.

Condition 3. Absence of surface currents and charges
at the boundary of a slowly moving medium.

Condition 4. Neglecting the effects of heat and mass
on the electromagnetic waves propagation.

To construct the considered model, the following equations
have been used.

1. Maxwell’s  equations used both to describe
the electromagnetic field in medium at rest, and to describe
the electromagnetic field in slowly moving medium of finite
dimensions:

rot H :la—D+4—nj, roth—la—B,
cot ¢ c Ot (1)

divD =4np,divB =0,
where E and H — electric and magnetic fields respectively;
D and B — respectively, electric and magnetic induction
in a slowly moving medium of limited dimensions; p and j —
the density of external charges and currents in a slowly
moving medium of limited dimensions.

2. The Minkowski equations expressing the relationship
between the electric field and electric induction, magnetic
field and magnetic induction and obtained on the basis
of Lorentz transformations:

oeltn)-oe[50])
sofet ol o))

where € and p — respectively, the values of the dielectric
and magnetic permeability of the medium at rest.

It should be noted that Equations (2) correspond to the
above Condition 2. It should also be noted that the well-
known Lorentz transformations for the cases corresponding
to translational motion with a constant speed of one
medium relative to another medium are valid only when
these media are infinite, in connection with than there is
noneed to take into account the additional specular
reflection of the signal [6, p. 314-315]. Thus, Minskovsky’s
equations have a limited application area.

3. Equations expressing the relationship between
the electric field and electric induction, magnetic field and
magnetic induction at the boundary of a slowly moving
medium of finite dimensions:
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[n, EZ—EI]:%”(Bz—BI),

[n’Hz_Hl]”}_%ﬂ(Dz_D]), 3)

divB=5B,,-B, =0,
divD=D, -D, =0,

where n — normal to the boundary of a slowly moving
medium of finite dimensions; E1, Hi, Bi, D1 — respectively,
electric field, magnetic field, electric induction, magnetic
induction on one side of the boundary of a slowly moving
medium of finite dimensions; E2, Hz, B2, D2 — respectively,
electric field, magnetic field, electric induction, magnetic
induction on the other side of the boundary of a slowly
moving medium of finite dimensions; i — surface current;

T

va — the projection of the speed of the medium boundary on
the normal of this boundary [1]; o — surface charge.

Appendix A to this article describes the equations that can
be used to take into account the surface current and charge
at the interface between adjacent medium when simulating
the process of propagation of electromagnetic waves in
slowly moving medium. This issue is described in more
detail in[7]. In most works on the electrodynamics
of inhomogeneous layered structures, the surface current
and charge at the interface between adjacent medium are
not taken into account [4].

Thus, the theory of electrodynamics of slowly moving
medium in inhomogeneous layered structures of a finite size
is far from complete.

lll. ELECTROMAGNETIC WAVES PROPAGATION
SPEED IN SLOW MOVING MEDIA

Consider a plane light wave with frequency o, propagating
in a uniform isotropic nonmagnetic dielectric moving with
speed u along the z axis, provided that the direction of
motion of the dielectric coincides with the direction of
wave propagation, i.e.u, =u, =0, u: = tu:

E= Eoei(mt—uz) '

. L ®
In this case, taking into account that v = e where v — wave

speed, we have the following [8, p. 84-87]:
C

1
vE, = H0y+uz (1——)E0x
€ I3

]
VE,, = §H0x tu, (1—EJEW E, =0,

“4)

1
vH, =—cE, +u, (1——)H0x,
€

1
vHOy =cE, +u, (1——)H0y,u02 =0
€

As follows from Equations (4), if Eov, Eoy, uox, toy are

1
different from zero, then v=u, [1——}= ¢

. So as

€ €€,

Je =n — refractive index of the medium, we finally write
down the following equation:

c 1
v:—+(1——2ju2. (%)
n n

Performing calculations for the case of an arbitrary angle
between v and u, we can make sure that Equation (5) remains
valid in the general case. Equation (5) was first obtained
by O. Fresnel in 1818. According to the studies carried out
by H. Lorentz (1895), some correction must be introduced
into the Fresnel formula, taking into account the medium
dispersion. Fresnel’s formula is confirmed by the
experimental data of A.Fizeau (1851) and with particular
accuracy — by P. Zeeman (1914).

IV. EQUATIONS FOR DESCRIPTION OF
ELECTROMAGNETIC WAVES PROPAGATING IN
SLOWLY MOVING MEDIUM

In what follows, the electromagnetic wave speed v will be
determined by the Fresnel formula. In high-frequency
electrodynamics, to take into account the medium motion,
the state changes of which are sufficiently slow compared
to the frequency of an electromagnetic wave propagating

through it, when v(¥) and Ycl it s possible
c

to recommend using the hyperbolic ‘“aeroacoustics”
equation derived by D. Blokhintsev [8, p. 40, 84-87] for
electrodynamics [7, 9, 12]. In this case, the telegraph equation
will be as follows:

en( O°E OE
I 2(v,V) == (v,V)(V,V)E+
c \ ot ot

ov oJ
(E,VEJ‘FMO(E‘F(V,VJ)jj— (6)

(AE —grad divE) -V x rotE.

1 1
n(n) u(n)

In the presence of convective motion with constant speed
v in the one-dimensional case, if &= const, p = const,
A = const, we receive the following:

ol 82E—ZVGZE + (8_J+v8_Jj_
o Voo ) Ml T o

(e
o

(N
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Note that Equation (6) is valid if the medium speed u
depends on time, but doesn’t depend on coordinates. When
the medium speed is also determined by the coordinates,
then Equation (6) doesn’t hold. In this case, to solve the
problem, we can recommend the proposed numerical
method based on the use of local Einstein’s invariants
in the difference cell, simultaneously with the Courant
condition, which relates the step in time and space:

h, Az,
= 2 2\ 2 2\’
c[1-(u"/c)] [1-(u"/c)]
where ¢ — speed of disturbance transmission in a medium
atrest; ho, At, — the length of the difference cell and the

time step in the Lagrange frame of reference. In fact,
Equation (7), if there is no conduction current, we solved
numerically for acoustic tasks in this paper. For the one-
dimensional case, instead of E, we used the sound pressure
P [9]. The sound “audibility” against the wind decreases,
and increases with the wind. These well-known
experimental facts were confirmed by numerical
calculations. Comparison of the data in the medium at rest
and in the moving medium showed that only the sound
intensity changes, but we didn’t observe a phase shift.

Equation (7) can be used to simulate the occurrence
of electric fields due to the movement of the medium.
Theidea of constructing a  difference  scheme
for Equation (6) taking into account the medium motion is
based on the papers of M. Laue [10] and A. Einstein [11],
in which it is proved that a light pulse propagating in the
form of a separate wave packet can be transformed as the
speed of a material points. Due to the unusual and “little-
known” of this position, we quote M. Laue from the
paper [10]: “Imagine a light pulse propagating in the form
ofa wave packet and moving with a speed c relative
to an observer stationary in this medium. Together with this
packet, some object moves, which is always in the field
of the light beam and, therefore, remains illuminated by this
beam all the time. Obviously, for another observer, moving
at some arbitrary speed relative to the first, this object will
also appear to be illuminated all the time.

And in order for this condition to be fulfilled, it is
necessary that the speed of the packet of light waves during
the transition from the frame of reference of the first
observer (in which he is stationary) to the “frame
of the second observer” is transformed as the speed
of a material point.” We also present the reasoning
of A. Einstein [11, p. 12]: “Let at the moment of time ¢4 (here
“time” means “time of the resting system”) a light beam
leaves A, is reflected in B at the moment of time ¢
and returns back to 4 at the moment of time 5. Taking into
account the principle of the light speed constancy, we find:

®)

rAB

ty—t,= Sty =

N 2
where 745 — the length of the moving rod, measured in the
frame at rest.” Here V is the light speed, designations are

preserved according to [6, p. 12]. Further: “Let a light beam

7
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be sent from the origin of coordinates of the system £ at
time to along the x axis to point x" and reflected from there
at time 11 back to the origin where it arrives at time T2, then
there must be ratio

1
5(ro+rz)=rl

or, writing out the arguments of the function t and applying
the principle of constancy of the speed of light

in a stationary system, we have
1 x' x'
_l_
V—v V+v

> IO(O,O,O,t)+12(O,O,O,{t+

-
V—v)

If x' is taken to be infinitely small, then this implies
1 1 1 ot ot 1 ot
— + IR — + —
2\V-v V-v)ot ox V-vot
ot v Ot
_' + —2 5 _—
ox' Vv ot
It should be noted that, instead of the origin, we could
have chosen any other point as the starting point of the light
beam, and therefore the equation just obtained is valid for
all values x', y, z.

If we take into account that light along the y and z axes,
when observed from a stationary frame, always propagates

with a speed \/V'* —v* , then a similar reasoning applied to
these axes gives

=rl(x,0,0,t+

or

&y o

oy 0z

Since ¢ is a linear function, it follows from these equations

_ 1%
T=a t—mx ,

where a — yet unknown function @(v) and for the sake
of brevity it is assumed that at the origin of coordinates of
the system kat t=0also r=10.”

Note, that A. Einstein used his transformations only for
infinitely small segments, therefore, it is logical to use them
to take into account the motion of the medium in the
difference cell. The need to present these considerations is
due to the fact that in [11, p. 12], the case of two moving
bodies, but not a continuous medium, is proposed. For a
continuous medium, as shown in the paper [9], it is
necessary to introduce at least one more point and use two-
layer time difference schemes for the hyperbolic equation.
The concepts of space and time, which were developed by
A. Einstein, arose on an experimental-physical basis.
However, in recent publications and textbooks on field

0.
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theory, the above reasoning [11, p. 12] are virtually absent.
Considering that the concept of simultaneity of non-uniform
events is relative, A. Einstein introduced a virtually new
concept of time, which is used in the relativity theory.

V. NUMERICAL SIMULATION OF ELECTROMAGNETIC
WAVE PROPAGATION IN SLOW MOVING BOUNDED
MEDIA USING INFINITELY SMALL LORENTZ'S
TRANSFORMATIONS

To simulate the process of electromagnetic waves
propagation in slowly moving medium, the authors propose
touse an approach based on the construction and use
of a difference scheme, which takes into account of these
medium motion.

We used a similar approach to simulate the sound waves
propagation in a moving inhomogeneous medium [9].
Earlier, we showed [12] that to solve the problem of an
electromagnetic pulse propagation in an inhomogeneous
medium, taking into account the induced surface charge and
surface current, it is necessary to reduce Maxwell’s
equations to hyperbolic equations for E and take into
account the matching conditions at the interface between
adjacent medium.

We have considered in more detail the issues of
agreement in work [7] and presented in Appendix B to this
article. Note that in order to fulfill the matching conditions,
we proposed to use a soliton-like electromagnetic wave
packet, which can be used to take into account the
broadening of spectral lines, the temporal and spatial
dispersion of signals in a material moving medium.

Using the known characteristic of the electric field
E (r,1), it is easy to determine the characteristic of the
magnetic field H (r,t) from the second Maxwell’s
equation. Note that at present, when considering problems
of mathematical physics, which are described using
hyperbolic equations, as a rule, the effect of convective
transport is not taken into account. For example, when
deriving the string vibration equation, it is assumed that the
string length is constant.

When modeling the process of propagation of sound
waves in a moving inhomogeneous medium, we used a
wave equation of the form:

2
n(p,x,t)ap—ﬁ(k(p,x,t)g_}’j, ©

orr  ox X

where P — the pressure exerted by sound waves
on the particles of the medium in which they propagate.

The presented equation takes into account the fact
of medium motion in which sound waves propagate.

It is known that upstream and upstream disturbances

occur at different speeds: v(l+zj and v(l—z), where
v v

v— in the case under consideration, the speed of sound
waves, u — the speed of movement of the medium in which

these waves propagate. Multipliers (l + zj in what follows
v

10

we will define it as a nonreciprocity relation. We will take
this effect into account when constructing a difference
scheme for the wave Equation (6) using deformations
of the difference cell, which reflect the influence of the
motion of the medium.

Let’s define the relationship of spatial and temporal
dimensions in a moving medium. Let us introduce a
uniform mesh in a medium at rest: Q, ~=Q, xQ_, where

Q, = {x,=ihy, i=0,1,2,.,N, hyN, =1} and
Q ={t,=jt.j=0,12.N W, =t,}.

In the case of the medium motion, each node moves
relative to a stationary observer with a speed v;, therefore,
during the sound signals propagation, during which
the observer constantly registers the amplitude and
frequency of changes in the pressure exerted by sound
waves on the particles of the medium in which they
propagate, or the speed of motion of this medium, the node
moves some additional distance. For a stationary observer
at node 7, sending or receiving sound waves (change
in pressure or speed) in the direction of motion
of the medium and against the direction of motion
of the medium (specular reflection), the paths of its passage
for a cell of length /o (ho are cells in the Lagrange frame of
reference) will be different.

Let’s consider two cases of sound wave propagation:
A — to the right of node i; B — to the left of node i. We
assume that the medium speed within the difference cell, as
well as the sound waves speed, are constant values.
The dependence of the medium motion speed u and
the sound propagation speed v on the coordinate and time
will be taken into account when constructing the difference
scheme.

According to [8], for the general case when
the convective term u(x, T) depends on both the coordinate
and time, there is no solution to Equation (9) in differential
form.

A. The stationary observer is at node 7, then the sound
waves, the direction of propagation of which coincides with
the direction of the medium motion, has a total speed v+u,
and during the time Af of the signal from node i to node
i+1, node i+1 itself moves to some additional distance uA¢,

therefore A" =h,+uAt, where At=h"/(v+u) and
h*=hy+uh’ [ (v+u).

B. A stationary observer is at node i, then sound waves, the
propagation direction of which doesn’t coincide with the
medium motion direction, have a total speed v—u, and during

the time of signal propagation At from node i to node i—1, the
last one, that is, node i—1, approaches node i at a distance

ult, therefore h™ = hy—uAt, where At=h"/(v—u) and
b~ =hy—uh™/(v—u).
Then

h+:h0(1+%j,h‘=ho(l—%), (10)
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where h*,h~ — sizes of cells in the Euler frame

of reference. Consequently, for a stationary observer
located at node i, an initially uniform grid is deformed
in the Euler coordinate system.

When deriving Equation (10), we actually used in the
difference cell the general d’ Alembert solution for the one-
dimensional wave Equation (9), which represents a pair
of traveling waves propagating, respectively, to the right
and left along the x axis at a constant speed:
P(x, 1) = Pi(x—cf)+Px(x+ct). These waves are the superposition
of direct and reflected waves [13, p. 309-310] (specular
reflection).

In the difference scheme, we will use Equation (10),
which actually lead to deformations of the Euler
computational domain due to the motion of the medium.
The general d’Alembert solution for the one-dimensional
wave Equation (9) was generalized by us to a moving
medium. The medium motion is taken into account directly
in the difference cell when constructing the difference
algorithm. The size of this cell should not depend on the
speed sign; therefore, when constructing the difference
scheme, we use the condition that the dimensions of the cell
are independent of the direction and sign of the moving
medium speed [11]. This means that the sound waves sent
by the observer attime j—1 in the direction of medium
propagation (or against this direction) should be perceived
at time j+1 at the same node 7, when the direction of the
signal is reversed, i.e. that is, measurements are averaged
over time. In other words, this procedure of averaging
measurements in time reflects the fact that the same node at
the same time is the emitter and receiver of sound waves.

When constructing the difference scheme, we assume that
the wave Equation (9) is valid in a medium at rest and in
amoving medium in the local instantly accompanying
Lagrange frame of reference for a given individual
difference cell with a sufficiently small step 4. Having
solved Equation (10) with respect to ko, we pass to the
Euler variables and, for convenience, choosing the step

inspace h=/(/N_,wehave hy=h/(1£u/v),

— 1| h h h
hy=— u+ i = (11)
2 1-= 1+ | =%
Y V V2

Let us first consider the case when n=1/v* and k = 1.

We write the initial wave equation not for a segment,
but for the difference spatial nodes of the grid:

1 o*°P O*P

2 A2 A2 > b
c” ot 8)62A /

X=X

<t<t (12)

— Vj+l
where x, — deformed nodes constructed in accordance with

Equation (11).
Boundary and initial conditions:
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P(0,t)=PR(1), (13)
P(x,1,) =P, (x)

%:P"(JC),OS)CSK (14)

A difference algorithm for solving the initial-boundary
value problem (12)—(14) is given in Appendix B to this
article.

The proposed method for the numerical solution of the
wave equation in a moving medium using infinitely small
Lorentz transformations is also applicable for cases when
the medium has ionic conductivity (electrolyte, plasma,
ionosphere). It should be noted that when using this method
in this case, it is necessary:

- take into account the effect of heat and mass fluxes
in the expression for the total current [12];

- determine the speed of the medium taking into account the
Fresnel increase factor.

VI. CONCLUSION

When using the developed method in the course of modeling
of electromagnetic waves propagation process in slowly
moving bounded medium, it’s possible to take into account
the influence of the medium motion on the electromagnetic
waves propagation, as well as additional specular reflection,
when the velocity of the medium depends not only on time,
but also on coordinates. The proposed method for the
numerical solution of the wave equation in a moving medium
is applicable forcases when the medium has ionic
conductivity (electrolyte, plasma, ionosphere). It should be
noted that when using this method in this case, it is
necessary:

- take into account the effect of heat and mass fluxes in the
expression for the total current [7];

- determine the medium speed taking into account
the Fresnel increase factor.

Also, the proposed method for the numerical solution of the
wave equation in a moving medium can be generalized
to phenomena  associated ~ with  the  propagation
of electromagnetic waves with a speed exceeding the speed
of light. However, it should be noted that such waves cannot
be used in practice in order, for example, to remotely activate
an electronic device or to transmit information over
a wireless medium, that is, in essence, such waves are not
signals. A. Sommerfeld in the paper [14] has substantiated
the signals properties. In accordance with [14], the most
significant property of the signal is that its front under
all circumstances and for any medium features propagates
at the light speed.

In accordance with the reasoning presented in Sections [V
and V of this paper, the proposed principle of discrete
consideration of wave propagation can be used to solve
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problems both in the field of electrodynamics and in the
field of aeroacoustics, as well as when constructing theories
of diffusion elasticity, wave equations of heat conduction,
and other phenomena that are described by hyperbolic
equations and in which it is necessary to take into account
the effect of convective motion of the medium.
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APPEDINX A

Maxwell’s boundary conditions do not contain any closing
relations for the induced surface charge and surface current.
The use of known Leontovich — Shchukin conditions at
interfaces, for example, for nanoobjects, is incorrect, since
these conditions assume that the electrophysical properties
and characteristics of the object vary little over distances of
the order of a wavelength. The surface charge due to the
passage of a direct current through the interface of adjacent
medium can be determined according to [9, 12]

U () @b

c=—¢,
RS °( 2, 2,

As follows from Equation (Al), the induced electric
charge o is determined by the magnitude of the current, and
also by a factor that takes into account the properties of the
medium. It is assumed that the surface charge is zero and
is associated with electrostatics. As can be seen from
Equation (A1), this assertion is valid only if

& _ &
A, A,

It is usually believed that the interface between adjacent
medium isn’t capable of carrying a surface charge, and it
should be taken into account only for electrostatic
problems. In fact, as shown in [9, 12], the surface charge
can arise in the presence of a normal component of the
conduction current.

The reformulation of Maxwell’s equations and their
reduction to a wave equation make it possible to exclude
from consideration surface charge and current, but in this
case the number of boundary conditions becomes
significantly larger, since at each boundary it is required
to specify nine first derivatives now with respect
to coordinates, as well as Ex, Ey and E:, and their derivatives
with respect to time, i. e. 15 conditions, and the problem
also becomes technically unrealizable. The way out
is to use the continuity condition of the total current at the
interface between adjacent medium and the use of end-to-
end counting schemes. The calculation method consists
inthat the investigated region containing various
inhomogeneous (angular, layered) structures
is conventionally placed in the “casing” and we specify
the boundary conditions only on it [7, 9].

APPENDIX B
For clarity, we consider the one-dimensional wave equation
of oscillations of a string:

o’u  ,0u

FE ny(xJ), (x,t)eD, (B1)
ou
Ul =0x),—| =y(x),0<x<l, (B2
Ot |,y
ul o= (), ul_,=p,(),1=0. (B3)

With given functions f'« € C(D), ¢ € C3(0<x<]),
YeCH(0<x<1), and p1 € CH0 <x <), you need to find a
function u € CA(D), that satisfies Equation (B1) in the
region D, initial conditions (B2), and boundary conditions
of the first kind (B3). Problem (B1)—(B3) describes the
process of oscillations of a homogeneous string of length /
stretched along a segment 0<x<I1. The first initial
condition of (B2) defines the graph u = ¢(x) of the string at
the initial time =0, and the quantity y(x) from the second
initial condition of (B2) is the initial velocity of the string at
the point with a coordinate x.

Note that when formulating the problem (B1)-—(B3),
certain restrictions must be imposed on the given functions
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¢, y, and pi. In particular, matching conditions must be
satisfied at the angular points of the region:

¢(0) =1, (0), (1) =, (0),
1, (0)=y(0), w',(0)=y(l)

These conditions are necessary conditions for the
continuous differentiability of the solution u(x,?) in a
closed region D. Since the solution is u € C(D), then in
addition to conditions (B4), second-order conditions must
be satisfied:

u'(0)—a’¢"(0) = £(0,0),
W (0)-a’e"()=£(0)

Indeed, we differentiate conditions (B3) twice with

respect to ¢, and the first condition of (B4), twice with
respect to x, then

(B4)

(BS)

o’u . o’u .
7 =1,(0), — =1,(0),
ot | = ot |
x=0,t=0 x=1,t=0
2 2 (B6)
ou " ou "
P} = (0), P =¢ (0),
X x=0,t=0 x x=[,t=0
Substituting the values of the derivatives at the

corresponding points to Equation (Bl), we obtain the
required conditions (BS).

In the future, we will be interested in waves generated by
sources that perform modulated oscillations:

mA mA
Acoswtt——coswitEt—cosw,t, (B7)
2 ) ?

where w1 =w+Q and w2 = w+Q.
Equation (B7) is easily transformed into

S=A[l£mcos(Qt — Kx)]cos(wt —Kx)  (BS)
or
S'=A[1+ mcos(Qf — Kx)lsin(wt — Kx),  (B9)

where K = 0.5(ki—k2), K'=0.5(kitk2), and Q Kw, Q is
the frequency and k1 and k2 are the wave numbers.

In fact, the wave generated by our modulated source does
not differ from the superposition of the three waves that
would be created by three independent sources. Let us
imagine that waves of the form (B8) and (B9), which were
formed with the help of special “tuning forks”, i.e. technical
means, begin to propagate in a continuous medium. In this
case, because of the interaction of a “direct” wave of the
form (B8) and (B9) with the backward wave, the spectral
line broadens. The broadening of the spectral line is
explained by many effects: spin-spin interaction, signal
absorption by the medium, exchange interaction, collisional
broadening, Doppler effect, etc. As is known, the general
solution of the wave Equation (B1) is the d’Alembert
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solution: the sum of the forward and backward waves, with
the backward wave having a broadening of £2A. As a
result, we obtain for an electromagnetic wave

E () = A[1+ mcos Qt]x
X[2sin wt —sin(w—2A)t —sin(w+ 2A)¢t] = (B10)
=4 A1+ mcos Qt]sin® Atsin wt,

where the frequency w corresponds to a wave moving to the
right, and the frequency w+2A corresponds to a wave
moving to the left. A similar expression can also be
obtained for E,:

E (¢) = A[1+ mcos Qs]x
x[2 cos wt —cos(w—2A)t —cos(w+2A)t] = (B11)

=4 A1+ mcosQt]sin 2At cos wt.

In deriving (B10) and (B11), we used the well-known
trigonometry equations:

sina sinf} siny = i[sin(oc +B—-y)+sin(B+y—a) +
+sin(y +o —p)—sin(a+B+7v)],
sina sinf3 cosy = %[—cos(a +B—-y)+cos(B+y—a) +

+cos(y+a—B)—cos(a+B+7)]
with the condition o=f.

The broadening of the spectral lines is due to the
interaction of the emitting atom with the surrounding
particles: other atoms and molecules, ions and electrons.
Therefore, functions of the form (B10) and (Bll)
continuously fill the frequency band w—2A <w <w+2A.
In addition, it takes some time to establish a signal
(transient process), finally, for the components Ex and E,
we have

E (0,t)=
w+2A 2
j— _ . 2
o (1-mcosot)sin wt
4A ’
E,(0,0) =
w+2A 2
=4 l-—— — |sin® gtd¢ |x (B13)
i —

o (1-mcosot)cos wt

4A
It is easy to verify that Ex(0, #) and Ex(0, f) satisfy the
necessary  matching conditions, since Ex(0,/) =0,
E'0,£) =0, Ez(0,7)=0 and E'.(0, t) =0, when the pulse
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propagates into a medium with zero initial conditions.
A group of waves is a kind of oscillatory circuit with
distributed parameters, in which “forced” oscillations are
not established immediately, but only after a certain time
after “including an external emf”.

At the initial time moment, when t—0, the expression in
parentheses in the integrand expressions (B12), (B13)
exactly corresponds to the “establishment function” in the
oscillatory circuit under the action of an external sinusoidal
electromotive force.

The problem of propagation of a soliton-like
electromagnetic pulse in an inhomogeneous medium is
considered in more detail in [7].

APPENDIX C
We denote by y:, the approximate value of the function P at
the grid nodes Q, .. Equation (12) is approximated by a

difference scheme taking into account the nonreciprocity
relation (10) and the independence of the grid step size
from the direction of motion of the medium (averaging
of measurements over time)

Vi j+ _2yi,j Vi1 (1—(u2/V2 ))[,j y
el - 2h

i,j

yi+],j+l _yi,j+1
X1Q -
i+—,j+1

h

Vit T Vic1
— - = = +
T ™ (1)

Yier,j-1 — Vija
1
L
425 h

Yij-1 7 Vic,ja
i—%,i—l h ’

i=2,N_—1,j=1N,—1

+Y

-

where @ =1+u/v, y=1-ulv,

u’ u)' u)'
[1——2] -2 (1+—j +(1——j
v V) V)

L] L] i,

Boundary conditions:

Vi) :E(tj), V. =5 (tj)’j =2N, (€2)

Initial conditions:

-1

vf,jt Yieto —Vio _ Yio = Vicio (C3)
h h ’

i=LLN -1
The stability of the sweep algorithm for the difference

scheme the Equations (C1)—(C3) are satisfied for any
tand 4 [4].
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