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ABSTRACT In the present work, a dynamic stochastic method is proposed and used for the synthesis of
uniform linear antenna arrays. The proposed method combines the classical invasive weeds optimization
(IWO) and the mutation process, which makes it robust, simple and shows flexibility to be adapted. The
dynamic IWO applies the mutation process in the calculation of standard deviation during the spatial dispersal
process of produced seeds while keeping the mean at the parent plants. In the mutation process, if special
conditions were achieved, the standard deviation would be re-initialized. This proposed method tries to
achieve an optimal array pattern by acting on the relative amplitude excitation of each element in the linear
array for an optimal inter-element spacing. The optimal array pattern has deep or broad nulls in some
directions of interferences with low sidelobes level. The objective of the synthesis is to get amplitude
excitations with low dynamic range ratio (DRR), which facilitates the design of beamforming feed network.
To illustrate the robustness of the proposed method, numerical examples are presented and compared with
the obtained results using bees algorithm (BA), bacterial foraging algorithm (BFA), real genetic algorithm

(RGA), and the corresponding reference array pattern for each example. !

INDEX TERMS Antenna array synthesis, dynamic invasive weeds optimization, nulls control, dynamic

range ratio.

I. INTRODUCTION

HE recent huge development in  wireless

communications needs permanent enhancements in
antenna arrays characteristics to respond, efficiently, to the
request of the dynamic environment. The most studied
characteristics in the literature are the sidelobe level (SLL)
suppression [1], the production of nulls in the directions of
interferences [2], and the shaped power pattern [3]. In mobile
communications, the linear antenna array topologies are very
popular [4] because they offer the possibility to modify the
inter-element spacing and the complex excitations (amplitudes
and/or phases) of the array. In this work, we are interested in
the latter possibility, which is the variation of complex
amplitudes.
The synthesis problem of imposing deep and/or broad nulls in
the direction of interference while the main-beam is oriented
to the users is known as beamforming. Usually, this kind of
synthesis problem has been done considering many
constraints such as minimum SLL, a fixed first null beam
width (FNBW), and a dynamic range ratio (DRR) less than a
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given threshold in the current distribution. Then, an additional
cost function is used [5, 6]. Another constraint presented in the
mutual coupling, which can be avoided by using an inter-
element spacing equal to or greater than half a wavelength [7,
8].

Since the analytical synthesis techniques have many
limitations such as being stuck in local minima, the
evolutionary methods, inspired from natural phenomena, are
increasingly employed to solve antenna synthesis problems
[9]. Among the efficient and recent methods used to
synthesize an antenna array, one can cite neural networks
(NN) [10], real genetic algorithm (RGA) [11], bacterial
foraging algorithm (BFA) [12], biogeography-based
optimization (BBO) [13], bees colony algorithm (BA) [14],
particle swarm optimization (PSO) [15], cuckoo search
algorithm (CSA) [16], and jaya algorithm (JA) [17]. In [18],
the authors proposed a new algorithm denoted IWO, which is
a stochastic method inspired by the behavior of real colonizing
weeds in nature. The antenna array synthesis using IWO
became popular through many works in the literature [19].
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Often, the IWO algorithm is used to solve real continuous
problems; but in some cases, the binary coding is also applied
[20]. To enhance the ITWO algorithm, many researchers
worked on its development in many hybrid versions. A hybrid
IWO with iterative Fourier technique (IWO-IFT) has been
developed to synthesize a large planar thinned array [21].
Other hybrids IWO were applied for synthesizing antenna
arrays as in [22]-[24]. In the same way, a modified IWO is
used to design a compact coplanar waveguide CPW-fed
printed ultra-wideband antenna [25]. A modified IWO was
also proposed for electricity price forecasting. It is based on
reducing the standard deviation of a weed according to its cost
function [26]. In addition, multi-objective invasive weed
optimization (MOIWO) algorithm, based on the
nondominated sorting of the solutions, has been used to
optimize the pulse durations and the switch-on instants of the
time-modulated elements of a conformal phased antenna array
[27].

Previously, we proposed and used a modified IWO for the
synthesis of both cosecant linear antenna array in [28] and
non-uniform linear array in [29]. In this paper, the proposed
dynamic IWO (DIWO) is used to synthesize linear antenna
arrays to find optimal amplitude weights that allow achieving
an array pattern imposing a broad null and suppressing the
sidelobe levels with keeping the main beam width of a
reference pattern. The DIWO results are compared with those
of similar work using RGA [30], BFA [12], and BA [14]. Each
example is compared to a uniformly excited equidistant array
or Chebyshev array as in [12] and [14]. Four design examples
of a linear array are presented, with respectively 12, 16, and
20 elements, in which the dynamic range ratio (DRR) is taken
into consideration. In the antenna array synthesis problem, it
is important that DRR of excitation amplitudes must be low to
make the implementation of the array feeding feasible in
practice [31].

Il. LINEAR ARRAY MODEL

Consider a uniform linear array consisting of 2N antenna
elements as shown in Fig. 1. The array is assumed symmetric
about its center. The Array Factor (AF) is calculated based on

AF(8) = 2YN_  I,cos (k(n — 0.5)d(cosf — cos8,)) (1)

where

k=2m/A and A is the wavelength, N is the number of elements
on each side of the array, d is the inter-element spacing, 9 is
the observation angle from the axis of the array and 6o is the
pointing angle of the main beam (at broadside 6o =90°). Iu
denotes the current excitation of the n™ element on each side
of the array. Only the amplitude will be adjusted during the
optimization process, the phase distribution is maintained
constant and equal to zero.
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Linear array with 2N isotropic elements positioned along the z-

FIGURE 1.

axis.

To examine the robustness of the proposed technique, two
synthesis problems will be considered.

In the first part, the linear array synthesis will be done by
considering two examples (2N=12 and 16 elements), which
can provide an array pattern with two deep nulls, on each side
of the main beam, with an acceptable level of the sidelobes.
The nulls are imposed at the second and the third peaks of the
reference pattern (uniform excitation /=1 and inter-element
spacing d=//2). The expression (1) of AF is used to obtain the
amplitude excitations and the inter-element spacing d that
impose nulls towards specified directions and reduce the SLL,
while keeping the beam-width of the main lobe equal to that
of the reference pattern. These requirements are imposed using
the following fitness function [30].

[TI¥_ 1 AF (0 =nully,|

Ch=0G [4F (60)]

+ G X1 HK)(Q — 6) +

C3(BW; — BW,) @

where

M is the number of nulls on either side of the main beam.
Generally, the number of nulls that can exist on the pattern of
an array depends on many factors such as pattern geometry,
number of elements, inter-element distance, and method of
feeding. AF(6) is the value of the array factor in the direction
of the main beam. The second term of equation (2) is used to
minimize the SLL to a given threshold d. k£ denotes the number
of peaks of sidelobes in the reference pattern, Ok is the
sidelobe level (in dB) achieved by the adjusted parameters (/n
and d) at the k™ peak, and 6 is the desired threshold of the
sidelobes level (in dB). H(k) is defined as

(1L,(Q—8) >0
HOO =0 (o ~ 5y < 0 @

The third term is introduced to keep the bandwidth narrower
than that of the reference pattern (uniform excitation with
d=N2). BW. and BWj are, respectively, the calculated and the
desired beam width. Ci, Cz2, and C; are the weight factors
depending on the importance of each term.
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As in [30], we try to achieve an array pattern with deep nulls
in some directions where the value of Ci must be higher than
the values of Cz and Cs. The value of the threshold 6 is taken
from the corresponding reference pattern (/n =1, d=A/2) for
the first two examples (2N=12, 16). For each case, the
threshold (desired SLL) & is fixed to -20 dB which is
corresponding, approximately, to the level of the third peak
in each example. For the examples of 2N=20, another
function ESL will be used with a desired threshold § =-28
dB, which is slightly above 30 dB of the reference pattern
(30 dB Chebyshev array pattern).

The dynamic range ratio can be defined by the ratio between
upper and lower value of amplitude excitations in an antenna
array. An array pattern with low side lobe level can be easily
achieved but with high DRR. A tradeoff between these two
parameters must be taken into account. Minimizing the
dynamic range ratio (DRR) is very useful to simplify the
design of antenna array feed networks, which makes the
implementation of the array feeding feasible in practice.
Likewise, low DRR helps to reduce the effect of mutual
coupling between array elements.

In some works, such as in [32], the DRR is reduced just by
limiting the search interval of amplitude excitations. In this
paper, to minimize the dynamic range ratio, another term can
be introduced in the cost function; its expression is given by

max(In)

DRR = 4
In the second part of our study, we carry out a synthesis of a
20-element linear array (2N = 20) by controlling the
amplitude-only, which allows obtaining an array pattern with
deep null in a given direction for the first example and a broad
null in the desired direction for the last example. These goals
can be achieved by minimizing the following cost function

min(ly)

CF, = 2389 (W (0)|AF,q,(8) — AF4(0)| + ESL(6)) +
DRR  (5)

where
AFa(8) stands for the achieved pattern using DIWO while
AFa(®) denotes the desired pattern which can be given by

O: lf 9 = 9,:
initial patern, elsewhere

AF,(6) = { (6)

The term W is used to control the null depth and position while
ESL controls the maximum peak sidelobe level. For a fair
comparison, the values of the parameters # and ESL are taken
similar to those used in [14],

50, if 6 =6;
1, elsewhere

we) = ™

and
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5, if MSLL > —28dB
0, otherwise

ESL(9) = { 3

where MSLL represents the maximum sidelobe level and 6
represents the direction of null.

lll. DYNAMIC IWO

Modifications were made on the optimization algorithms to
increase the speed of convergence and enhance the robustness
of the classical algorithm. IWO is a new powerful method,
compared to many other traditional metaheuristic methods.
This method is based on the colonization phenomenon of real
invasive weeds in agriculture [ 18]. The invasive weeds present
a high resistivity and adaptability allowing them to occupy all
the free space around cropping fields and grow to flower and
generate new seeds. The optimization process starts from
random parameters (/» and d) of a uniform linear array. These
parameters will be optimized to place symmetric wide nulls on
either side of the main beam. In the modified algorithms of
IWO, many works try to find the model of spatial dispersal,
which can provide good dispersion of seeds around the parent
plant with improved performances. In our dynamic IWO, the
model of spatial dispersal uses, iteratively, a mutation process
in the calculation of standard deviation. The number of
produced seeds depends on the fitness value of their parents.
The produced weeds will grow randomly and become new
plants in the colony. The algorithm of dynamic IWO proceeds
as follows:

A. INITIALIZATION

Firstly, a population of plants will be generated, randomly, and
spread over the search space. This initial population is denoted
by POP= [P, P, ..., Ppop ini] Where pop_ini is the number of
plants in the population. Each plant in the colony is treated as
a proposed solution in the search space. Our problem has
(N+1) dimensions that can be represented by a vector P;
containing the excitation variables and the inter-element
spacing. The vector P; is termed as Pi= [I1, L, ..., I, d].

B. EVALUATION

The evaluation of each plant is based on the associated fitness
value which can give information about how good the plant is.
To evaluate the plants, a cost function will be defined by the
designer. The minimum and the maximum values of the cost
function (fitness) correspond, respectively, to the best plant
(solution) and the worst plant in the colony.

C. REPRODUCTION

According to the fitness value, each plant can produce a
number of seeds varying from zero up to a maximum number.
The better plant in the colony produces a maximum number of
seeds while the worst plant does not produce any seed. The
number of produced seeds for a given plant is calculated by
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Ns(P;) = integer [ms + (BC—WC (CP) —we) Unlike the conventional IWO, spatial dispersion procedure is

®
where Ms and ms are, respectively, the maximum number and
the minimum number of seeds. While BC, WC, and C(P;)
represent, respectively, the cost function (fitness) of the best
plant, the cost function of the worst plant, and the cost function
of the i plant within the colony.

D. SPATIAL DISPERSION

Among the best characteristics of real weeds, we can cite their
adaptation both for short-distance dispersal and long-distance
dispersal [33]. Dispersal increases competition between parent
and their offspring and decreases the chance of seed being
damaged. In addition, dispersal reduces the probability of
falling in a local minimum.

To simulate this ideal dispersion, the new seeds will be
randomly dispersed around their parents, using a normal
distribution with a zero mean and a standard deviation SD that
will be diminished iteratively as follows

, , d
_ (itrmax—itr\™0
SDyy = (Frmer

itrmax

(SDini — SDsn1) + SDpny

(10)

where

itrmax 1 the maximum number of iterations and itr is the actual
iteration index. SD;» and SDyu are respectively the initial and
final standard deviation values and mod represents the
nonlinear modulation index, usually equal to 3 as suggested in
[19]. In some works such as in [34], the value of mod is varied
iteratively.

As depicted in Fig. 2, when the standard deviation dwindles
iteratively, the search must be limited to the small areas around
the reproducing plant, which has an accepted fitness level,
which permits to increase the estimation accuracy [35].

Evolution of SD

Standard Deviation SD
P8 2 & & g

=}

[}

o 10 20 30 40 50 60 70 80 90 100
Number of iterations
FIGURE 2. Evolution of classical IWO standard deviation for different mod

values.
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modified using some other hybrid process. Many works of
modified IWO demonstrate that the choice of standard
deviation value is paramount in obtaining performance
improvements such as fast convergence. Several studies
highlight the significance of obtaining its optimal value. For
instance, in [26], the produced seeds are selected randomly
from the feasible solutions around their parent plants in a
neighborhood with a normal distribution. In [27], for each
plant, the value of the standard deviation is determined based
on its ranking in the actual population, where the standard
deviation will be varied periodically [35].

To enhance the explorative power of the classical IWO
method, we incorporate the mutation process of the genetic
algorithm to modify iteratively the standard deviation SDitr,
which alter the distribution of new seeds around their parent
plant. Classical genetic algorithm uses the mutation operation
with a fixed probability rate, whose the inconvenient is that the
best individual in the population will be selected several times.
In our work, to avoid falling in local minima, a dynamic
mutation probability is used. It consists in moving the search
space during the optimization process to other promising
search areas which can contain global minima, as illustrated in
Fig. 3.

In our dynamic IWO, a mutation process of the GA will be
used in the determination of the spatial dispersion parameters
[36]. Initially, a probability Pm is given. If Pm is less than a
random value in the interval [0, 1], the actual value of the
standard deviation SDi» will be replaced by its initial value
SDini. Otherwise, the standard deviation SDi»will be calculated
using (10).

The proposed algorithm is as follows:

Step 1: A random number is generated.

Step 2: A fixed probability of mutation Pw is chosen.
Step 3: If the random number is greater than P then
SDitr = SDini;

Else

SDin is calculated from (10).

Step 4: Repeat this algorithm for each iteration.

The value of the mutation probability Po is chosen empirically.
In our paper, this initial value is fixed to 0.8, while the
probability of mutation Pm will dwindle iteratively according
to equation (11).

(1_ itr. )
P,(itr) =1- PO nbr_itr (11)

where nbr_itr is the maximum number of iterations.

As Pn decreases iteratively, the standard deviation will be
reduced when the cost function is near to its fitted value.
According to equation (11), the dynamic nature of the
proposed method allows the ratio of mutation operator to be
changed linearly during the search progress. It starts from a
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ratio of 100% till it achieves a mutation ratio of 0% by the end
of the search process (Pm=1 at the last iteration).

F. LIMITATION

The produced seeds will grow and will be added to the colony,
where the population of plants grows fast and reaches its
maximum number of plants pop max. In this scenario, the
population will be shrunken using a competitive exclusion.
This process will keep, iteratively, only the best pop max"
plants in the colony, while removing the rest.

G. STOP CRITERION

The simulation process continues until the maximum number
of iterations is reached. The best plant in the final population
will then be taken as an optimal solution.

Initial
B

search
space

New
search

Global
optimum

Fitness function

Local

5 optimu

v

Iterations

FIGURE 3. Dynamic IWO strategy

IV. NUMERICAL RESULTS

The proposed dynamic IWO is applied to the synthesis of
various linear array designs. The design goal is to impose nulls
in the directions of interfering signals and suppress sidelobe
levels, with respect to the main beam for a reference array, by
controlling the amplitude excitation of each element array.
Four design examples of uniform linear arrays are given here.
The number of elements (2N) is, respectively, set to 12, 16,
and 20. For all examples, the array is assumed to be symmetric
about its center with an inter-element spacing d and the scan
angle of the main beam is fixed to 90°. In order to illustrate the
performance of the proposed algorithm, the obtained results
using our dynamic IWO (DIWO) method are compared to
those of similar work using RGA [30] for the first two
examples, while the last two examples are compared to those
using BA and BFA algorithms. In our study, the DRR is taken
into consideration. For each example, both instantiations are
compared to a reference pattern (uniformly excited array or
Chebyshev array).
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In each example, the size of the initial population, pop _ini,
is set to 4 dim, where dim is the problem dimension. The
maximum number of population pop max is twice the initial
population pop_ini. For the standard deviation, SDini must
be high to allow a good exploration of the search area (1 to 5
% of the range of the variable) as in [19], while the final SD,
SDfnl, must be smaller than the precision criteria of the
optimized variable. In the present study, SDin and SDyu are
fixed to 0.05 and le-7, respectively. The maximum number
of iterations is fixed to 500 for the first part and 1000 for the
second part.

In the first part of this study (2N=12, 16 elements), DIWO is
used to find deep nulls imposed at the locations of the second
and third peaks of the reference pattern (uniformly excited
array with d=A/2). The constraint is to reduce the SLLs while
keeping the beam width close to that of the reference pattern.
Here, the amplitude weights of the current distribution along
the array are controlled with optimal inter-element spacing d.
The amplitude weights can vary from zero to one, and d can
vary from A/2 to A. The current distributions are assumed
symmetric about the array center. Each plant in the population
is considered as a vector of the amplitude excitations and the
inter-element spacing of the array elements. The dimension of
the problem becomes (N+1), where the first N values represent
the amplitude weights, while the (N+1) ™ value represents the
inter-element spacing. The obtained patterns, which use the
control of amplitude weights and inter-element spacing, using
DIWO for 2N=12 and 16 elements are presented in Fig. 4 and
Fig. 5, respectively. As shown, these two figures present two
deep nulls at the locations of the first and second peaks of the
corresponding reference pattern. Likewise, Fig 4 and 5 present
a considerable reduction in the sidelobes level, while
maintaining some characteristics of the reference pattern such
as beam width.

The normalised AF pattern
54.57°65.7° '

——DIWO
= = =RGA [30] |
SR 2 2 L Uniform

Normalized array factor in dB

L L L L L " . L
0 20 40 60 80 100 120 140 160 180
Theta in degree

FIGURE 4. Comparison of normalized array factor with excitation
coefficients by DIWO (solid line), RGA (dashed line), and uniform array (dotted
line) for 2N=12, Nulls towards 54.5° and 65.7°.
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The normalised AF pattern

T -
——DIWO)
= = =RGA[30] |

s Uniform

Normalized array factor in dB

. L L " L " L "
0 20 40 60 80 100 120 140 160 180
Theta in degree

FIGURE 5. Comparison of normalized array factors with excitation
coefficients by DIWO (solid line), RGA (dashed line) and uniform (dotted line)
for 2N=16 with nulls imposed at the 2nd (6=72°) and 3" (6=64.4°) peaks.

Table I presents all the results extracted from Fig. 4 and Fig.
5, while Table II indicates the optimal amplitude weights
which are obtained using DIWO, with optimal inter-element
spacing for each array configuration. For a comprehensive
comparative evaluation, the obtained weights were contrasted
with the best result of the other methods (RGA) with the same
array configuration under equal simulation conditions and
many runs. As it can be seen, the optimized array patterns, for
2N=12 and 16, present deep nulls, on each side of the main
beam, at the second and third peaks. Also, Fig. 4 and 5, both
illustrate a reduction in the maximum peak of the SLL (PSLL)
with the obtained amplitude weights and the inter-element
spacing compared to that of the corresponding reference
pattern (/=1 and d=4/2). For each case, improved results are
obtained with dynamic IWO. For 2N=12 elements, the first
null at the location of the second peak (6=65.7°, 114.3°) is
deeper than -69.5 dB where the second null imposed at the
location of the third peak (6=54.5°, 125.5°) is deeper than -100
dB with a dynamic range ratio equal to 3.6. The sidelobe level
observed is -22.6 dB; it is reduced by more than 6 dB
compared to that achieved by RGA (-16.2 dB). For the
optimized array using RGA, the nulls at the locations of the
second and third peaks have depths of, respectively, -66.5 dB
and -82.8 dB, with a DRR equal to 6.6. The second example
concerns an array of 2N= 16 elements, the achieved DRR is
1.7 for DIWO while it is 2.5 for RGA. The SLL is reduced by
more than 8 dB (from -13.1 dB to -21.1 dB).

As it is shown in this example (2N= 16), our goal is perfectly
achieved by determining an optimal set of excitation currents
of antenna elements. This optimal set has a lower DRR and
help to obtain an array pattern with minimum SLL, and narrow
beam width.
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TABLE I. Pattern Properties of a Linear Array of 2N=12 and 16 Elements
(Extracted from Fig. 4 and Fig. 5)

Uniform RGA DIWO

Null depth 2" peak -17.2 -63.0 -69.6

(dB) 31 peak -19.6 -85.1 <-100

FNBW in (°) 19.6 21.6 18.6

PSLL (dB) -13.1 -16.2 -22.6

Null depth 2M peak -17.5 -83.9 -72.2

6 (dB) 3" peak -20.1 -69.1 -72.2

FNBW in (°) 14.5 14.5 14.5

PSLL (dB) -13.1 -19.7 211

TABLE II. Excitation Results for the Linear Array using the Dynamic IWO
Method

Number
of
elements

Optimal current excitation (normalized);

d in function of A DRR

RGA  0.6876 0.7969 0.7023 0.6753
0.2092 0.1201; 0.6262 6.6

DIWO  0.7698 0.6506 0.5952 0.4902

0.2985 0.2115; 0.7138

RGA 0.6049 0.5893 0.5405 0.5850 2.5
0.3186 0.3795 0.4347 0.2377;
0.6006

DIWO 0.9877 0.9911 0.8926 0.8395 1.7
0.6699 0.5978 0.5858 0.5996;

0.5889

In the second part, we consider a linear antenna array of 2N =
20 elements with an inter-element spacing d of one-half
wavelength. In order to compare our method with the Bees
Algorithm [14], the synthesis problem will be done by
controlling only the amplitude. A wide null is placed at 30°
with A =5° for the first example and a deep null towards 14°
for the second one. In both examples, a Chebyshev pattern
with -30 dB sidelobe level is used as a reference pattern.
Array patterns are characterized by null depth, first null
beamwidth (FNBW), and SLL.

In the broad null example (synthesis of an array of 2N=20
elements for a desired wide null towards 30° with Af = 5°),
we present (in Fig. 6) the radiation pattern obtained with
DIWO, compared to BA, BFA, IWO/WDO patterns and the
reference one. Pattern properties are tabulated in Table III
while the corresponding excitation weights are reported in
Table IV. For this example, the resulting pattern has a wide
null imposed at 30° with AG=5°. We note here that a null depth
level, deeper than — 60 dB, is achieved with a minimum DRR
(4.1), over the concerned region A8, while the null depth level
using BA is -56.4 dB. For IWO/WDO method [37], the
resulted pattern has a wide deep null but it presents a DRR of
7.5 and a SLL of -26 dB.
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FIGURE 6. Comparison of normalized array factor with excitation coefficients
by DIWO (solid), BA (dash-dotted), BFA (dashed), IWO/WDO (solid marked by
+), and Chebyshev (dotted) for 2N=20, Wide Null at 30° with A8=5°.

TABLE lll. Pattern Properties of an Array of 2N=20 Elements (Extracted from
Fig. 6)

. . FNBW in PSLL in

Wide Null depth in dB degree dB

Chebyshev - 16.5 -30

BA -59.6 16.6 -28.1

BFA -54.5 16.6 -28.2

IWO/WDO >-74 18.0 26.6
[37]

DIWO -59.8 16.6 -28.3

TABLE IV. Current Excitation Weights for the Array of 2N=20 Elements with
Wide Null Imposed at 30°

Pattern Optimal current excitation (normalized) DRR

Chebyshey 1.0000 0.97010 0.91243 0.83102 0.73147 35
Y 0.62034 0.50461 0.39104 0.28558 0.32561 ’

BA 1.0000 0.96710 0.94167 0.86812 0.69680 49
0.56521 0.55146 0.46650 0.23989 0.25600 )

BFA 1.0000 0.97404 0.93899 0.86503 0.70220 49
0.56285 0.54207 0.46450 0.23882 0.25372 ’

1.0000 1.02640 0.826724 0.781624
IWO3/\7NDO 0.734856 0.620133 0.482278 0.457006 7.5
[37] 0.136290 0.154630
DIWO 0.9805 0.9765 0.9106 0.8444 0.7017 a1

0.5501 0.5469 0.45410.2367 0.2367

In the last example, we synthesize an array of 2N=20
elements with the desired null at the peak of the second
sidelobe of the Chebyshev pattern, which occurs at 94°. The
obtained pattern is shown in Fig. 7. As it can be seen, the best
design is obtained by DIWO, with a null depth around -80 dB.
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Theta in degree

FIGURE 7. Comparison of normalized array factor with excitation coefficients
by DIWO (solid), BA (dash-dotted), BFA (dashed), and Chebyshev (dotted) for
2N=20 Nulls towards 14°.

TABLE V. Current Excitation Weights for the Array of 2N=20 Elements with
deep Null Imposed at 14°

Pattern Optimal current excitation (normalized) DRR
Chebyshey 1.0000 0.97010 0.91243 0.83102 0.73147 35
Y 0.62034 0.50461 0.39104 0.28558 0.32561 ’
BA 1.0000 0.98927 0.95488 0.88706 0.77968 41
0.64053 0.48971 0.35057 0.24459 0.31066 ’
BFA 1.0000 0.99452 0.96393 0.89263 0.78084 40
0.63995 0.48871 0.35188 0.24809 0.31423 ’
DIWO 0.9693 0.9610 0.9257 0.8528 0.7427 42

0.6093 0.4534 0.33120.2335 0.2752

In Table V, we present a comparison between our results and
results obtained using different stochastic methods, for a
uniform linear array of 20 elements. These results concerns the
optimal amplitudes excitation obtained by our dynamic IWO
and those achieved by BA and BFA methods, for the same
topology design. The comparison shows that our method
allows to obtain better results in terms of reduced DRR (4.2),
deep nulls and minimum SLL.

The results depicted in Fig. 4, 5, 6, and 7 illustrate the
robustness of the proposed algorithm for the antenna array
synthesis with deep nulls towards interference directions. To
complete the study, the evolution of the minimum cost
function (in dB) in the colony is presented versus the number
of iterations in Fig. 8. The evolution of standard deviation
versus iterations using DIWO is presented in Fig. 9, where
more than 94 mutations are shown. Fig. 10 illustrates the
optimal distribution of excitation that gives the optimized
array factor in Fig. 7, this distribution presents a DRR of 4.2.
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FIGURE 8. Convergence curve of the minimum cost function of the proposed
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V. CONCLUSION

In this paper, a dynamic IWO was presented and
successfully applied to the synthesis of the uniform linear
antenna array. This synthesis problem was used to find the
current excitation for each element in the array while leaving
the phase unmodified. The DDR was also taken into account.
The results showed that the dynamic IWO method gives
normalized array factors with imposed nulls (deep or wide) in
the desired directions and also with minimum side-lobe levels
with the constraint of fixed main beam width and low DRR.
The obtained patterns were compared with data from reference
arrays and with BA and BFA or RGA optimized arrays, which
illustrate the robustness of the proposed method, constrained
on DRR, for placing single or multiple nulls (deep or broad).
Moreover, the mutation process was used in the determination
of the spatial dispersion (SD) value, which allowed a good
exploration of the search space and escaping from falling in
local minima and helping maintain diversity in the colony. In
consequence, the convergence has been accelerated. We plan
for our future works to exploit our dynamic IWO for adaptive
beamforming applications.
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