A Hybrid Time-Domain Maxwell/MTLN-Equations Method to Simulate EM-induced-Currents on Electric Cable-Bundles Inside Cavities

Main Article Content

J.-P. Parmantier
X. Ferrieres
P. Schickele

Abstract

This paper proposes a time-domain hybrid method for coupling Multiconductor-Transmission-Line Network equations and a Finite Element Method to evaluate the electromagnetic response of the electric wires of a cable-bundle located inside a 3 dimensional structure. The method is applied and demonstrated over a box structure made of several volumes containing a realistic multiconductor cable-harness and illuminated by a plane wave. The formalism of the method is given and the results obtained show the interest of this approach.

Downloads

Download data is not yet available.

Article Details

How to Cite
Parmantier, J.-P., Ferrieres, X., & Schickele, P. (2020). A Hybrid Time-Domain Maxwell/MTLN-Equations Method to Simulate EM-induced-Currents on Electric Cable-Bundles Inside Cavities. Advanced Electromagnetics, 9(2), 31-41. https://doi.org/10.7716/aem.v9i2.1471
Section
Research Articles

References


  1. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House (2005).
    View Article

  2. S.M. Rao Time-Domain Electromagnetics, Series Editors, David J. Irwin Auburn University, Academic Press, 1999.

  3. G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations, Scientific Computation, Springer, 2002.
    View Article

  4. G.C. Cohen, S. Pernet, Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations, Scientific Computation, Spinger, 2017.
    View Article

  5. R. Holland and L. Simpson, Finite Difference Analysis of EMP Coupling to Thin Structs and Wires, IEEE Trans. on EMC, vol. 23, pp. 88-97, May 1991.
    View Article

  6. F. Edelvik, A New Technique for Accurate and Stable Modeling of Arbitrary Oriented Thin Wires in the FDTD Method, IEEE Trans. on EMC, 45 (2) : 416-423, 2003.
    View Article

  7. C. Guiffaut, A. Reinex, B. Pecqueux, New Oblique Thin-Wire Formalism in the FDTD Method With Multi-wire Junctions, IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, March 2012.
    View Article

  8. N. Deymier, T. Volpert, X. Ferrieres, V. Mouysset, B. Pecqueux, New High Order Method to Solve EMC Problem, Advanced Electromagnetics, Vol. 4, No. 2 October 2015.
    View Article

  9. C. R. Paul, Analysis of Multiconductor Transmission-Lines, Wiley-Blackwell (2007).
    View Article

  10. E. Bachelier, S. Bertuol, J-P. Parmantier, T. Volpert, D. Roissé, N. Muot, C. Giraudon, C. Girard, HIRFSE Cooperative EM Simulation Approach for Modeling the NTC1 Test-case with the ALICE FDTD and CRIPTE Codes, proceedings of CEMEMC'13 workshop. March 19th-21st, 2013.

  11. hhtp://epicea-env714.eu/

  12. F.M. Tesche, M.V. Ianoz, T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, pp. 247-266, 1997.

  13. A. K. Agrawal, H. J. Price, S. B. Gurbaxani, Transient Response of Multiconductor Transmission-Lines Excited by a Nonuniform Electromagnetic Field, IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-22, No. 2, May 1980.
    View Article

  14. L. Paletta, J-P. Parmantier, F. Issac, P. Dumas, and J.C. Alliot, Susceptibility Analysis of Wiring in a Complex System Combining a 3D Solver and a Transmission-Line Network Simulation, IEEE Trans. on Electromagnetic Compatibility, Vol. 44, No. 2, 309-317, 2002.
    View Article

  15. X. Ferrieres, J-P. Parmantier, S. Bertuol, and A. Ruddle, Application of Hybrid Finite Difference/Finite Volume to Solve an Automotive Problem, IEEE Trans. on Electromagnetic Compatibility, Vol. 46, No. 4, 624-634, 2004.
    View Article

  16. S. Arianos, M. A. Francavilla, M. Righero, F. Vipiana, P. Savi, S. Bertuol, M. Ridel, J-P. Parmantier, L. Pisu, M. Bozzetti, G. Vecchi, Evaluation of the Modeling of an EM Illumination on an Aircraft Cable Harness, IEEE Transactions on EMC, Vol. 26, 4, Aug. 2014, pp. 844-853.
    View Article

  17. I. Junqua, J-P. Parmantier, S. Bertuol, FTL approach for High Frequency EM Coupling on Cables installed in Complex Structures, In Proceedings of the 2018 International Symposium on Electromagnetic Compatibility-EMC Europe.
    View Article

  18. J-P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys.114, 185-200, 1994.
    View Article

  19. J-P. Berenger, A Multiwire Formalism for the FDTD Method, IEEE Trans. on EMC, Vol.42, No.3, August 2000.
    View Article

  20. C.E. Baum, T.K. Liu, F.M. Tesche, On the Analysis of General Multiconductor Transmission-Line Networks, Interaction Notes, Note 350, Nov. 1978.

  21. M. Ridel, P. Savy, J-P. Parmantier, Characterization of Complex Aeronautic Harness - Numerical and Experimental Validations. Electromagnetics, Vol.33, Issue 5, pp. 341-352, 2013.
    View Article

  22. P. Degauque, J-P. Parmantier, Compatibilité Electromagnétique - Chapitre 2: Couplage aux structures filaires (P. Degauque et J-P. Parmantier). In "Compatibilité Electromagnétique", Collection technique et scientifique des télécommunications. In French.

  23. N. Muot, C. Girard, X. Ferrieres and E. Bachelier, A Combined FDTD/MTL Time-Domain Method to Solve Efficiently Electromagnetic Problems, PIERS B, Vol.58, 409-427, 2013.
    View Article

  24. C.E. Baum, Low- and High-Frequency Solutions of the Telegrapher Equations for Nonuniform Multiconductor Transmission Lines, Proceedings of the 2007 IEEE International Symposium on Electromagnetic Compatibility, Honolulu, HI, USA.
    View Article

  25. K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equation in Isotropic Media, IEEE Transactions on Antennas and Propagation, Vol.14,No.3, pp.302-307, May 1966.
    View Article

  26. J-P. Parmantier, S. Bertuol, and I. Junqua, "CRIPTE : Code de réseaux de lignes de transmission multiconducteur - User's guide-Version 5.1", ONERA/DEMR/T-N119/10 - CRIPTE 5.1 2010.

  27. R. Chilton, H-, P- and T-Refinement Strategies for the Finite-Difference Time-Domain (FDTD) Method Developped via Finite-Element (FE) Principles, Ph.D. thesis, The Ohio State University, 2008.