Design of Plasmonic NOT Logic Gate Based on Insulator – Metal – Insulator (IMI) waveguides

Main Article Content

H. F. Fakhruldeen
T. S. Mansour


   In this work, all-optical plasmonic NOT logic gate was proposed using Insulator-Metal-Insulator (IMI) plasmonic waveguides Technology. The proposed all-optical NOT gate is simulated and realized using COMSOL Multiphysics 5.3a software. Recently, plasmonic technology has attracted high attention due to its wide applications in all-optical signal processing. Due to its highly localization to metallic surfaces, surface plasmon (SP) may have huge applications in sub wavelength to guide the optical signal in the waveguides which results in overcoming the diffraction limit problem in conventional optics. The proposed IMI structure is consist of a dielectric waveguides plus metallic claddings, which guide the incident light strongly in the insulator region. Our design consists of symmetric nano-rings structures with two straight waveguides which based on IMI structure. The operation of all-optical NOT gate is realized by employing the constructive and destructive interface between the straight waveguides and the nano-rings structure waveguides. There are three ports in the proposed design, input, control and output ports. The activation of control port is always ON. By changing the structure dimensions, the materials, the phase of the applied optical signal to the input and control ports, the optical transmission at the output port is changed. In our proposed structure, the insulator dielectric material is glass and the metal material is silver. The calculated contrast ratio between (ON and OFF) output states is 3.16 (dB).


Download data is not yet available.

Article Details

How to Cite
Fakhruldeen, H. F., & Mansour, T. S. (2020). Design of Plasmonic NOT Logic Gate Based on Insulator – Metal – Insulator (IMI) waveguides. Advanced Electromagnetics, 9(1), 91-94.
Research Articles


  1. Y.-D. Wu, Y.-T. Hsueh, and T.-T. Shih, "Novel All-optical Logic Gates Based on Microring Metal-insulator-metal Plasmonic Waveguides," in PIERS Proceedings, 2013.

  2. N. Nozhat, H. Alikomak, and M. Khodadadi, "All-optical XOR and NAND logic gates based on plasmonic nanoparticles," Optics Communications, vol. 392, pp. 208-213, 2017.
    View Article

  3. M. Ota, A. Sumimura, M. Fukuhara, Y. Ishii, and M. Fukuda, "Plasmonic-multimode-interference-based logic circuit with simple phase adjustment," Scientific reports, vol. 6, p. 24546, 2016.
    View Article

  4. Y. I. Hammadi, "All-Optical Logic Gates Based on Graphene Interferometric Waveguide."
  5. T. S. M. Hassan Falah Fakhruldeen, "All-optical NoT Gate Based on Nanoring Silver-Air Plasmonic Waveguide " International Journal of Engineering & Technology, vol. Vol. 7, pp. pp. 2818-2821, 2018.
    View Article

  6. T. Birr, U. Zywietz, P. Chhantyal, B. N. Chichkov, and C. Reinhardt, "Ultrafast surface plasmon-polariton logic gates and half-adder," Optics Express, vol. 23, pp. 31755-31765, 2015.
    View Article

  7. H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings, ed: Springer, 1988, pp. 4-39.
    View Article

  8. H. J. Lezec, A. Degiron, E. Devaux, R. Linke, L. Martin-Moreno, F. Garcia-Vidal, et al., "Beaming light from a subwavelength aperture," Science, vol. 297, pp. 820-822, 2002.
    View Article

  9. B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Optics Letters, vol. 29, pp. 1992-1994, 2004.
    View Article

  10. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, "Beam focusing by a metallic nano-slit array containing nonlinear material," Applied Physics B, vol. 90, pp. 97-99, 2008.
    View Article

  11. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Applied Physics Letters, vol. 85, pp. 5833-5835, 2004.
    View Article

  12. A. Dolatabady and N. Granpayeh, "All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator," Journal of Nanophotonics, vol. 11, p. 026001, 2017.
    View Article

  13. X.-S. Lin and X.-G. Huang, "Tooth-shaped plasmonic waveguide filters with nanometric sizes," Optics Letters, vol. 33, pp. 2874-2876, 2008.
    View Article