A Novel 2.4-GHz Low-Profile Smart MIMO Antenna with Reconfigurable Frequency-Selective Reflectors

Main Article Content

C.-H. Tsai
J.-S. Sun
S.-J. Chung
J.-H. Tarng

Abstract

In this paper, a new low-profile smart multiple-input multiple-output (MIMO) antenna system is presented for WiFi IEEE 802.11a/b/g/n/ac/ax applications. The proposed compact 2.4-GHz antenna system employs two beam-switching antenna cells for MIMO operation. Each antenna cell is composed of four reconfigurable frequency-selective reflectors (RFSRs) and a one-to-four switching feeding network. The RFSRs are constructed using a one-wavelength metal loop resonator, which functions as a radiating antenna or a wave reflector to reflect beams along a specific direction, as controlled by the switching network. The feeding switching network utilizes PIN diodes to adjust the phase and impedance required for changing the operational status of each RFSR. The overall dimensions of the antenna system, including the metallic ground, are 120 mm ´ 120 mm ´ 9.5 mm. Moreover, the measured operational bandwidth of the 2.4-GHz antenna is approximately 100 MHz, and the radiation efficiency of each directed beam is 40%–70%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tsai, C.-H., Sun, J.-S., Chung, S.-J., & Tarng, J.-H. (2020). A Novel 2.4-GHz Low-Profile Smart MIMO Antenna with Reconfigurable Frequency-Selective Reflectors. Advanced Electromagnetics, 9(2), 42-51. https://doi.org/10.7716/aem.v9i2.1369
Section
Research Articles

References


  1. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems, IEEE Commun. Mag 52: 186−195, 2014.
    View Article

  2. S.-M. Wang, L.-T. Hwang, C.-Y. Hsu, F.-S. Chang, C.-F. Liu, A high port isolation MIMO antenna system for 2-6 GHz wide-band AP applications, Pro. ISAP, pp. 421−422, 2014
    View Article

  3. A. Ahmad, F.A. Tahir, Multiband MIMO antenna on variable-sized tablet PCs, Proc. APMC, Kuala Lumpur, Malaysia, pp. 612−615, 2017.
    View Article

  4. Z.-T. Wang, C.-J. Tsai, Compacted 8 MIMO antenna design for Wi-Fi AP, Progress in PIERS, Toyama, Japan, pp. 1978−1983, 2018.
    View Article

  5. M. Peng, H. Zou, Y. Li, M. Wang, G. Yang, An eight-port 5G/WLAN MIMO antenna array with hexa-band operation for mobile handsets, IEEE Int. Symp APS, Boston, USA, pp. 39−40, 2018.
    View Article

  6. R. Schlub, D.V. Thiel, Switched parasitic antenna on a finite ground plane with conductive sleeve, IEEE Trans. Antennas Propag 52: 1343-1347, 2004.
    View Article

  7. C. Laohapensaeng, C. Free, K.M. Lum, Printed strip monopole antenna with the parasitic elements on the circular ground plane, Proc. IWAT Int. Workshop, Singapore, pp. 371-374, 2005.

  8. P. Ngamjanyaporn, C. Kittiyanpunya, M. Krairiksh, A switch-beam circular array antenna using pattern reconfigurable Yagi-Uda antenna for space communications, IEEE ISAP, Phuket, Thailand, 2017.
    View Article

  9. S. Zhang, G.H. Huff, J. Feng, J.T. Bernhard, A pattern reconfigurable microstrip parasitic array, IEEE Trans. Antennas Propag 52: 2773-2776, 2004.
    View Article

  10. T. Maruyama, T. Uesaka, S. Yamaguchi, M. Ohtsuka, H. Miyashita, Four-element array antenna based on pattern reconfigurable Yagi-Uda antenna with complementary parasitic elements, IEEE APCAP, Kuta, Indonesia, pp. 183−184, 2015.
    View Article

  11. L. Marantis, D. Rongas, A. Paraskevopoulos, C. O. Zachos, A Kanatas, Pattern reconfigurable ESPAR antenna for vehicle-to-vehicle communications, IET Antennas Propag 12: 280-286, 2018.
    View Article

  12. T. Aboufoul, C. Parini, X. Chen, A. Alomainy, Pattern reconfigurable planar circular ultra wideband monopole antenna, IEEE Antennas Propag 61: 4973-4980, 2013.
    View Article

  13. S. Gaya, R. Hussain, M.S. Sharawi, H. Attia, Pattern reconfigurable Yagi-Uda antenna with seven switchable beams for WiMAX application, Microwave and Optical Technology Letter 62: 1-6, 2019.
    View Article

  14. J. Ren, X. Yang, J. Yin, Y. Yin, A novel antenna with reconfigurable patterns using H-shaped structures, IEEE Antennas and Wireless Propagation Letters 14: 1-6, 2019.
    View Article

  15. G. Yang, J. Li, D. Wei, S.-G. Zhou, R. Xu, Pattern reconfigurable microstrip antenna with multidirectional beam for wireless communication, IEEE Trans. Antennas Propag 67: 1910-1915, 2019.
    View Article

  16. M. Barba, J.E. Page, J.A. Encinar, J.R.M. Garai, A switchable multiple beam antenna for GSM-UMTS base stations in planar technology, IEEE Trans. Antennas Propag 54: 3087-3094, 2006.
    View Article

  17. R.C. Reinhart, S.K. Johnson, R.J. Acosta, S. Sands, Phase array antenna-based system degradation at wide scan angles, in Proc. PAST Int. Symp, Boston, MA, pp. 446-451, 2003.

  18. C.A. Reddy, K.V. Janardhanan, K.K. Mukundan, K.S.V. Shenoy, Concept of an interlaced phased array for beam switching, IEEE Trans. Antennas Propag 38: 573-575, 1990.
    View Article

  19. R.-B. Hwang, Y.-J. Chang, M.-I. Lai, A low-cost electrical beam tilting base station antennas for wireless communication system, IEEE Trans. Antennas Propag 52: 115-121, 2004.
    View Article

  20. J.-S. Row, C.-W. Tsai, Pattern reconfigurable antenna array with circular polarization, IEEE Trans. Antennas Propag 64: 1525-1530, 2016.
    View Article

  21. C.-H. Ko, I.-Y. Tarn, S.-J. Chung, A compact dual-band pattern diversity Antennaby dual-band reconfigurable frequency-selective reflectors with a minimum number of switches, IEEE Trans. Antennas Propag. 61: 646−654, 2013.
    View Article

  22. I-Y. Tarn, S.-J. Chung, A novel pattern diversity reflector antenna using reconfigurable frequency selective reflectors, IEEE Trans. Antennas Propag 57: 3035−3042, 2009.
    View Article

  23. M.-C. Tang, B. Zhou, Y. Duan, X. Chen, R.W. Ziolkowski, Pattern-reconfigurable flexible wideband directive electrically small near-field resonant parasitic antenna, IEEE Trans. Antennas Propag 66: 2271−2280, 2018.
    View Article

  24. Z. Wu, M.-C. Tang, M. Li, R.W. Ziolkowski, Ultra-low-profile electrically small pattern-reconfigurable metamaterial-inspired Huygens dipole antenna, IEEE Trans. Antennas Propag., 2019.