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ABSTRACT In this paper, we present a Transmission Line Matrix (TLM) algorithm for the simulation
of electromagnetic wave interaction with a Debye dispersive medium. This new formulation is based on
the use of the polarization currents in the medium. The auxiliary differential equation (ADE) method is
considered to deal with dispersion after the classical discretization. The accuracy and efficiency of this
approach were tested on 1D Debye medium by calculating the reflection coefficient on an air-dielectric
interface. The potential of the developed algorithm to model the existence of tumors in a human breast is also
demonstrated. The obtained results compared with the analytic model show a good agreement. The number
of operations needed for each iteration has been reduced, hence the computational time in comparison with
time convolution techniques, while maintaining a comparable numerical accuracy.

INDEX TERMS Computational electromagnetics, numerical methods, Transmission Line Matrix, biolog-
ical system modeling, Debye medium, microwave imaging.

I. INTRODUCTION

IN In the last two decades, the interest in modeling and
simulating electromagnetic wave propagation in disper-

sive media has considerably grown, fostered by the fact that
many materials exhibit frequency dependent electromagnetic
properties like polymers, dielectric fluids and more recently
of particular interest are biological tissues. Modelling such
media by means of time domain numerical methods implies
incorporating the dispesive effect to the formulation.

The numerical solutions proposed for modeling such dis-
persive media could be grouped in three main categories:
recursive convolution methods based on a recursive com-
putation of a convolution integral between the frequency-
dependent susceptibility and the electric field [1] [2], the
Z-transform method [3] [4], and the auxiliary differential
equation method (ADE) [5]. The latter is of particular interest
owing to its easier arithmetic implementation [6], first intro-
duced by Kishawa to model Debye media, Lorentz media,
and media obeying to the Cole-Cole circular relaxation arc
model [7] [8]. It was then extended to cover non linear dis-
persive media by Goorjian and Taflove [9],and more recently
extended to cover 2-D Kerr and Raman nonlinear dispersive
media response to an optical pulse [10]. Association of
the ADE method with previous cited techniques was also
prooven to be efficient for dealing with Drude critical point
model [11].

In the TLM method, a first modelisation and simulation

of a non linear dispersive medium in a 2D TLM mesh was
described in [12] where the behaviour of the dielectric was
modeled as an anharmonic oscillator and by connecting a
one-port nonlinear network to the nodes of the TLM mesh
allowing the simulation of the propagation of a soliton in
the despersive medium. In [13] the dispersion is illustrated
by incorporating a nonlinear capacitor represented by an
open circuit stub to the TLM node. The authors in [14]
extended the TLM method to take into account the presence
of anisotropic and dispersive first order Debye medium by
adding voltage sources on each node of the TLM mesh. This
scheme required the calculation of a convolution product
between the electric suceptibility and the electric field on
each iteration in order to obtain the value of the electric
flux density field D. Later on, Barba et al. [15] extended the
same method to a Cole-Davidson and a Cole-Cole dispersive
medium.

Extension of these simulation methods to the biological
tissues have gained relevance due to their application in the
emergent field of microwave tomography and bioelectromag-
netic dosimetry. An accurate model would give a reliable
prediction of these tissues physical response when exposed to
electromagnetic waves [16] [17], leading to a more efficient
design of wearable or implantable devices and the design
of a more efficient imaging systems [18] [19]. An efficient
model for these tissues in the microwave range is given by
the Cole-Cole model but with a major flaw: its computational
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complexity, mainly due to the fractional power of the poles,
which in time domain results in a partial derivative of the
polarisation current [20] [21] or the polarisation vector [22].
An accurate approximation to the Cole-Cole model but with
less computational complexity is given by the debye model
[23]. This model was first proposed by Debye [24] for
materials with permanent dipole moments, it is mostly used
to model electromagnetic wave interactions with water-based
substances. It is worth mentioning that the ADE technique
has not been applied before to model the Debye despersive
media in the TLM method.
In this work, an ADE-TLM approach to numerically model
a double pole Debye medium of the human skin, fat and
tumorous breast tissue is implemented. Unlike [14], in this
work voltage sources are added on each TLM node [25] fol-
lowing the differential equation of the polarisation currents
without requiring the calculation of a convolution product
between the electric susceptibility and the electric field on
each iteration. The numerical results are compared to those
obtained by the analytic model.

II. FORMULATION AND EQUATIONS
In the Debye medium, absorption is caused by dipole relax-
ation [26] and for a medium fitted with multiple relaxation
poles, each pole has an amplitude ∆εp = εsp − ε∞ and a
relaxation time τp and the complex permittivity is written:

εr(ω) = ε∞ +

p∑
p=1

∆εp
1 + jωτp

+
σ0

jωε0
(1)

where ε∞ is the infinite frequency relative permittivity, ε0
is the dielectric constant of the free space,εsp is the static
permittivity and τp represents the relaxation time for the pth
pole, and σ0 is the electric conductivity at DC. In this work
the Debye dispersion will be fitted with a 2 Debye pole model
( p=1,2).
We derive a set of auxiliary differential equations for the
polarization currents by transforming the frequency repre-
sentation of the permittivity into a time domain differential
operator.

TABLE 1: Debye constants for tissues of healthy breast,
tumoral tissue,and skin as in [28] while the conductivity is
taken as in [29]

Tissue skin Breast Malignant tumor
ε∞ 4.62 2.68 11.05
εs1 37.10 5.01 51.67
εs2 41.22 3.85 43.35
τ1[ps] 7.51 15.84 8.56
τ2[ps] 0.31 0.1 0.23
σ0[S/m] 0.82 0.738 0.15

The polarization current vector for the pth pole is related
to the electric field through :

Jp =
ε0∆εpjω

1 + jωτp
E (2)

Taking the inverse Fourier transform we obtain the differ-
ential equation describing the temporal relation between J
and E:

Jp + τp
∂Jp
∂t

= ε0∆εp
∂E

∂t
(3)

Applying central difference approximation at the time
instance t = (n + 1

2 )∆t with the discrete time step ∆t the
update equation for the polarization current vector is obtained
by [5] :

Jn+1
p = αpJ

n
p + βp(E

n+1 − En) (4)

with update coefficients :

αp =
1− ∆t

2τp

1 + ∆t
2τp

(5)

βp =

ε0∆εp
τp

1 + ∆t
2τp

(6)

Once the updating relation for the polarization current
vector is obtained we can consider the evolution of the time
dependent Maxwell equation:

∇∧H = ε0ε∞
∂E

∂t
+ σ0E +

p∑
p=1

Jp (7)

which after dicretization yields the relation between En+1

and En and the polarization currents attributed to the differ-
ent debye poles:

(∇∧H)
n+ 1

2
x,y,z = ε0ε∞

En+1
x,y,z − Enx,y,z

∆t
+σ0

En+1
x,y,z + Enx,y,z

2

+
1

2

[ p∑
p=1

(1 + αp)J
n
p + βp(E

n+1
x,y,z − Enx,y,z)

]
(8)

The update equation for the electric field can then be obtained
as follows:

En+1
x,y,z = Enx,y,z −

2σ0∆t

Dp
Enx,y,z−

p∑
p=1

(1 + αp)∆t

Dp
Jnp,x,y,z + (∇∧H)

n+ 1
2

x,y,z (9)

where

Dp = 2ε0ε∞ +

p∑
p=1

βp∆t+ σ0∆t (10)

III. THE TLM FORMALISM
The TLM method is based on the analogy between the
Maxwell’s equations and the signal propagation through a
network of multiport circuits. Hence instead of electric and
magnetic field components the electromagnetic field is rep-
resented by voltage and current waves. Each circuit is repre-
sented by a symmetrical condensed node (SCN), consisting
of interconnected transmission lines. As shown in Fig.1, this
structure models a unit cell of the propagation medium and
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each face of the cell corresponds to two ports orthogonal
to each other and labeled from 1 to 12 [29],with the sup-
plementary ports from 13 to 15 referring to the capacitive
stubs. To take into account the dispersive properties of the
medium voltage sources sV are included on ports 16 to 18
[15] [31].The SCN nodes are connected to each other to
form the simulation domain given in Figure 2 for a 1-D
propagation.

FIGURE 1: The Symmetrical condensed node (SCN)

In the case of a uniform TLM meshing of a 3-D domain,
the relationship between the electromagnetic field and the
voltage and current waves at the time step n∆t at the center
of the node are formulated as follows:

Enx,y,z =
V nx,y,z

∆l
H
n+ 1

2
x,y,z =

I
n+ 1

2
x,y,z

∆l
(11)

In this scheme, the update equation obtained from the ADE
in the Eq.(9) becomes:

V n+1
x,y,z = V nx,y,z−

2σ0∆t

Dp
V nx,y,z−

p∑
p=1

(1 + αp)∆t∆l

Dp
Jnp,x,y,z

+
∆t∆l

Dp
(∇∧H)

n+ 1
2

x,y,z (12)

compared to the voltage update equation in the TLM scheme:

V n+1
x,y,z = V nx,y,z +

1

4 + Yoc,x,y,z
(sV

n+1
x,y,z + sV

n
x,y,z)

+
4

4 + Yoc,x,y,z

∆t∆l

ε0
(∇∧H)

n+ 1
2

x,y,z (13)

where sV n are the sources added to the 16,17,18 symmetrical
Condensed Node ports to take into account the dispersive
property of the debye medium and Yocx,y,z is the normalized
admittance of the capacitive stub.

From the analogy between eqations (12) and (13) the
expression of the normalized admittance of the stub added
to the SCN node is obtained straightforward :

Yoc,x,y,z = 4(
Dp

2ε0
− 1) (14)

and the update equation for the voltage sources :

(sV
n+1)16,17,18 =

− (sV
n)16,17,18 + C1V

n
x,y,z + C2

p∑
p=1

Jnp,x,y,z (15)

where
C1 =

−σ0∆t

ε0
(16)

C2 =
−2(1 + αp)∆t∆l

ε0
(17)

The final update equation for the voltage in the center of the
SCN node after developing the curl operator by means of
incident pulses:

V n+1
x,y,z =

2

4 + Yox,y,z

[
(V i1,3,5 +V i2,4,6 +V i9,8,7 +V i12,11,10)

+ Yoc,x,y,zV
i
13,14,15 +

1

2
(sV

n+1)16,17,18

]
(18)

where the exponent i indicates the incident pulses, the sub-
scripts (1,...,12) the port number in the standard SCN, (13, 14,
15) denote the capacitive ports,while at the ports(16,17,18)
voltage sources are injected .

FIGURE 2: SCN nodes connection in the computational
domain

The scattering process in the capacitive stubs is given by:[
V r13,14,15

]n
= [Vx,y,z]

n −
[
V i13,14,15

]n
(19)

Figure 3 illustrates the successive steps leading to the
update of the electric field.The reduced number of arrows
in this chart shows that the method requires less arithmetic
operations than other algorithms such as PLRC [27]. The
dashed lines refer to the operations particular to this ADE-
TLM model. Starting from Jn and En and sV

n the update
of the electric sources sV

n is obtained using Eq.(15). The
latter is used alongside with the value of En to retrieve
the value of En+1 through Eq.(18) and finally the update
of the polarisation current vector is obtained using Eq.(4).
It is worth mentioning that the electric field components
are obtained from the voltage components in each iteration
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Jn

En

sV
n−1

sV
n

En+1

Jn+1

FIGURE 3: Flow chart of the algorithm of the ADE-TLM
method

through the usual transformation in the TLM formalism by
Eq.(11).

IV. SIMULATION AND DISCUSSION

To test the accuracy of the proposed TLM-ADE algorithm,
several cases have been studied, the choices made are driven
by the aforementioned interest in the capability of the ADE-
TLM Debye approximation to describe the behavior of bi-
ological tissues in the perspective of implementing it in a
microwave imaging technique. Under this scope, the param-
eters of the simulated two pole Debye model of the human
skin ,breast tissue in both healthy and tumorous cases taken
as in [28] are listed in Tab.1. The computational domain is
discretised as a one-dimensional grid of 800 cells aligned
on the z-axis with a dimension of ∆l = 75µm each , the
Debye dielectric medium is located at 300 ≤ z ≤ 700, the
remaining of the domain is occupied by air. The domain is
truncated by an unsplit PML layer [32] of 10 cells at the
beginning and the end.
The TLM grid is illuminated by a modulated Gaussian wave
Ex(t) = sin(2πf∆t).exp(−(n∆t−tmax)2

τ2 ) at a point 20 cells
from the limit of the grid. The wave propagates in the z
direction and the electric field is polarized in the x direction.
The simulation is performed for 10000 time steps corre-
sponding to a total time of 1.25ns, the transient reflected field
values were retrieved at the output point 10∆l TLM nodes
before the air-dielectric interface. Fourier transform is then
used to transpose the results to the frequency domain. Final
results are compared to the analytic prediction given by:

ρ(ω) =

√
εr − 1
√
εr + 1

(20)

where εr is the complex permittivity of the Debye medium.
it is worth to mention that in order for the ADE-TLM to
be computationally stable, the following condition must be
satisfied ( c.∆t∆l ≤ 1) where ∆l is the spacial discretization and
∆(t) is the time-step and c is the speed of light, satisfying
this requirement the values of the time and space steps are
∆l = 75µm and ∆(t) = 0.125ps.
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1
Iteration = 173

FIGURE 4: propagation of incident modulated Gaussian
impulse at time step 173 ∆t
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1
Iteration = 677

FIGURE 5: propagating and reflected modulated Gaussian
impulse on air/Debye interface at time step 677 ∆t.

First, a simulation of an air water and air muscle incidence
is carried out. Air parameters are taken as ε = 1, µ = 1 and
σ0 = 0S.m−1. the water is modeled as a single pole Debye
medium with ε∞ = 1.8, εs = 81 and τw = 9.4ps and the two
pole Debye parameters of the muscle are ε∞ = 32,∆ε1 =
2159, ∆ε2 = 24.99,τ1 = 46.25ns,τ2 = 0.0907ns with
σ0 = 0.106S.m−1.
figure 4 shows the incident impulse on the dielectric slab
at iteration 173,while figure 5 shows both reflected and
transmitted pulses through the slab at iteration 677. Figure
6 depicts the time domain simulation where we can see the
time domain incident and reflected waveforms.
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FIGURE 6: simulated time domain incident and reflected
pulse .
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FIGURE 7: ADE-TLM simulation results and theoretical
reflection coefficient for one pole Debye model for water.
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FIGURE 8: ADE-TLM simulation results and theoretical
reflection coefficient for two poles Debye model for human
muscle.

Figure 7 and figure 8 show the simulation results and the
theoretical reflection coefficients for an air-water interface
and air-muscle interface respectively. Very good agreement
between the two data sets for both cases over the whole
frequency range is obtained, showing the accuracy of the
proposed algorithm.
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FIGURE 9: ADE-TLM simulation results and theoretical
reflection coefficient for two pole Debye model for human
skin.
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FIGURE 10: ADE-TLM simulation results and theoretical
reflection coefficient for two poles Debye model for human
breast.
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FIGURE 11: ADE-TLM simulation results and theoretical
reflection coefficient for three pole Debye model for human
brain tissue.

Figure 9 and figure 10 show the reflection coefficient for
the air-skin medium and the air-human breast respectively.
Note that the Debye medium constants, as for the previous
simulations ,are listed in table1. Results show a good agree-
ment between the analytic method and the ADE-TLM model.
The efficiency of the model is also verified for a 3 pole debye
model of the brain tissue. The Debye fitting constants are
taken as in [10] :ε∞ = 30.616, ∆ε1 = 2341.1, ∆ε2 =
737.79, ∆ε3 = 27.84, τ1 = 49.999ns, τ2 = 11.816ns,
τ3 = 4.6096ns with σ0 = 0.14821S.m−1. The obtained
results are shown in Figure 11. Also in this case we can see
that a good agreement is achieved, with a maximum error of
0.4 dB at frequencies below 20 GHz and 0.1dB at the upper
limit of the frequency range of the simulation. IT is worth
mentioning that the above listed Debye fitting parameters
are dependent on the hydration of the biological tissue , an
approach to this dependence was presented by Robinson et al.
[33] for static properties. In [34] authors used a perturbation
method to demonstrate that for an average dehydration of
2% (measured in body weight loss) there is a 1% decrease
in permittivity.
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FIGURE 12: Numerical TLM structure used to validate the
application of the ADE-TLM code to a breast tumor detection
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FIGURE 13: ADE-TLM simulation of the influence of the
depth of the tumor and the width of the tumor on the reflec-
tion coefficient in dB :variation of the depth of the tumor with
a fixed width.
V. REFLECTION ON THREE LAYERED MEDIUM WITH
DIFFERENT DEBYE RELAXATION
To accurately assess the microwave imaging techniques the
simulation domain must be of a heterogeneous nature. In
this work the heterogeneity is modeled by a layered setup,
each layer has the Debye parameters of the corresponding
tissue in human breast morphology, the computational do-
main is bounded by Unsplit PML layers. The Debye medium
constants are taken as in Table 1 [35]. The computational
domain is 800 cells long and as in the previous simulation
the propagation is along the z-axis and the electric field is
polarized in the x direction. The Debye medium is defined
first as a skin layer of 10 cells thickness followed by healthy
breast tissue . A first simulation with a malignant tumor
located at a variable depth in the healthy tissue is carried
out. Figure 13 depicts the results of a parametric simulation
study, where the parameter is the depth of the tumor ranging
from 50 to 250 cells with a 50 cell step. The obtained results
show that there is a difference in the reflection coefficient
even for a minimal variation of the tumor depth of 50 cells
corresponding to a real variation of 3.7 mm. Furthermore,

we have calculated the reflection coefficient with the width
of the tumor as a parameter at a fixed depth. The results
are presented in figure 14. We can clearly see that there is a
variation of the reflection magnitude with the increase of the
tumor size.In both cases the reflection coefficient is sensitive
to the position of the tumor.

0 1 2 3 4 5 6 7 8 9 10

Frequency(GHz)

-15

-10

-5

0

R
e
fl
e
c
ti
o
n
 c

o
e
ff
ic

ie
n
t 
(d

B
)

20 cells width

30 cells width

40 cells width

50 cells width

60 cells width

70 cells width

FIGURE 14: ADE-TLM simulation of the influence of the
depth of the tumor and the width of the tumor on the reflec-
tion coefficient in dB : variation of the width of the tumor at
a fixed depth.
VI. CONCLUSIONS AND FUTURE WORK
The authors have proposed an ADE-TLM method to simulate
a multi-pole Debye medium. This model was compared
to the theoretical results for the skin, muscle, brain, and
breast tissues. Furthermore, the authors applied the model to
simulate the response of a breast with tumor. A parametric
study was conducted to show the ability of the model to
discriminate the tumor depth and width. The proposed model
has the advantage of being more simple because it doesn’t
have to deal with the convolution product as in the recursive
convolution methods. Future work will incorporate the effect
of the heterogeneity of the breast in order to extract a more
precise information about the location and characteristics of
the tumor from the back scatter.
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