Forward recursion approach of electromagnetic wave propagation characteristics in a slab of inhomogeneous magnetoplasma

Main Article Content

A. M. AL-Khateeb
M. A. Khasawneh
M. S. Bawa'aneh

Abstract

Propagation characteristics of electromagnetic radiation incident on an inhomogeneous magnetoplasma slab near a good conducting metallic surface is investigated. The inhomogeneous plasma slab is divided into thin layers (sub-cells) in order to allow for treating each plasma sub-cell as a homogeneous medium. A global matrix is formed upon matching the fields at all interfaces, which allows for the analytical determination of the reflection, absorption and transmission coefficients. For matching the tangential fields at the metallic surface, an impedance (Leontovich) boundary condition has been used. Propagation characteristics are calculated numerically for a set of parameters that may be suitable for many applications including stealth plasma. Numerical results show resonant absorption peaks near the electron cyclotron frequency that increase by increasing the equilibrium plasma density. They also show absorption enhancement by increasing the plasma slab width.

Downloads

Download data is not yet available.

Article Details

How to Cite
AL-Khateeb, A., Khasawneh, M., & Bawa’aneh, M. (2019). Forward recursion approach of electromagnetic wave propagation characteristics in a slab of inhomogeneous magnetoplasma. Advanced Electromagnetics, 8(5), 44-50. https://doi.org/10.7716/aem.v8i5.1317
Section
Research Articles

References


  1. V. N. Laxmi, A. K. Saha, Interaction of electromagnetic waves in the ionosphere, Radio Science, Vol. 23 (06), pp. 95167, 1988.
    View Article

  2. C.A. Valagiannopoulos and N.K. Uzunoglu, Scattering of ELF waves by underground formations because of night-day ionospheric ridge, RADIO SCIENCE, VOL. 42, RS6S32, 2007.
    View Article

  3. M. Keidar, M. Kim and I. Boyd, Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma, J. Spacecraft Rockets, 45(6), pp. 1223-1229, (2008).
    View Article

  4. C. Thoma, D. V. Rose, C. L. Miller, R. E. Clark and T. P. Hughes, Electromagnetic wave propagation through an overdense magnetized collisional plasma layer, J. Applied Physics, Vol. 106, pp. 043301, (2009).
    View Article

  5. C.A. Valagiannopoulos and N.K. Uzunoglu, Simplified model for EM inverse scattering by longitudinal subterranean inhomogeneities exploiting the dawn/dusk ionospheric ridge, IIET Microw. Antennas Propag., Vol. 5, Iss. 11, pp. 13191327, 2011.
    View Article

  6. Kai Li, Xue Yan Sun, Hou Tao Zhai, Propagation of ELF Electromagnetic Waves in the Lower Ionosphere, IEEE Transactions on Antennas and Propagation, Vol. 59 (2), pp. 661 666, 2011.
    View Article

  7. Rohtash Singh, A. K. Sharma and V. K. Tripathi, Grating formation by high power radiation in near equator ionosphere, Phys. Plasmas, Vol. 18, p. 112101, 2011.
    View Article

  8. Jinsil Lee, Sam Pullen, Seebany Datta-Barua, and Jiyun Lee, Real-Time Ionospheric Threat Adaptation Using a Space Weather Prediction for GNSSBased Aircraft Landing Systems, IEEE Transactions on Intelligent Transportation Systems, Vol. 18(7), pp. 1752761, 2017.
    View Article

  9. Youyi Zhang, Guanjun Xu and Zhengqi Zheng, Propagation of terahertz waves in a magnetized, collisional and inhomogeneous plasma with the scattering matrix method, Optik, Vol. 182, pp. 618 624, Apr. 2019.
    View Article

  10. M. P. Bachynski, Electromagnetic Wave Penetration of Reentry Plasma Sheaths, RADIO SCIENCE Journal of Research NBS/USNC- URSI, Vol. 69D (2) (1965).
    View Article

  11. J. P. Pybak and R. I. Churchil, Progress in reentry communications, IEEE Trans. Aerosp. Electron. Syst., vol. AES-7, no. 5, pp. 87994, 1971.
    View Article

  12. Yunxian Tian, Weizhong Yan, Xiaoliang Gu, Xiaolin Jin, Jianqing Li and Bin Li, Effect of magnetized plasma on the propagation properties of obliquely incident THz waves, AIP Advances, Vol. 7, p. 125325- 11, 2017.
    View Article

  13. Jiyun Lee, Y. T. Jade Morton, Jinsil Lee, Hee-Seung Moon and Jiwon Seo, Monitoring and Mitigation of Ionospheric Anomalies for GNSS-Based Safety Critical Systems: A review of up-to-date signal processing techniques, IEEE Signal Processing Magazine, Vol. 34 (5), pp. 96 110, 2017.
    View Article

  14. Xin Yang, Bing Wei and Weike Yin, A new method to analyze the EM wave propagation characteristics in the hypersonic sheath, Optik, Vol. 148, Pages 187-195, 2017
    View Article

  15. Chen Cong, Cheng Shi and Zhang Shi, A comparative study on electromagnetic wave propagation in a plasma sheath based on double parabolic model, Optik, Vol. 159, Pages 69-78, 2018.
    View Article

  16. Guanjun Xu and Zhaohui Song, Interaction of terahertz wave propagation in a homogeneous, magnetized and collisional plasma slab, Waves in Random and Complex Media, DOI: 10.1080/17455030.2018.1462542, Published online: 26 Apr 2018.
    View Article

  17. Cagatay Tanil; Samer Khanafseh; Mathieu Joerger; Boris Pervan, An INS Monitor to Detect GNSS Spoofers Capable of Tracking Vehicle Position, IEEE Transactions on Aerospace and Electronic Systems, Vol. 54 (1), pp. 131-143, 2018.
    View Article

  18. Kai Yuan, Jiamin Chen, Linfang Shen, Xiaohua Deng, Ming Yao, and Lujun Hong Impact of Reentry Speed on the Transmission of Obliquely Incident THz Waves in Realistic Plasma Sheaths, IEEE Transactions on Plasma Science, Vol. 46(2), pp. 373-379, 2018.
    View Article

  19. Mohammad A Matin, Review on Millimeter Wave Antennas- Potential Candidate for 5G, ADVANCED ELECTROMAGNETICS, VOL. 5, NO. 3, Dec. 2016.
    View Article

  20. S. Zainud-Deen, S. Abd Elhamied and H. Abd El- Azem Malhat, Integrated Millimeter-Wave Antennas for On-Chip Communication, ADVANCED ELECTROMAGNETICS, VOL. 5, NO. 1, Mar. 2016.
    View Article

  21. G. G. Machado, M. T. de Melo, H. V. H. Silva Filho, A. G. Neto and T. R. de Souza, Low Radar Crosssection and Low Cost Dipole Antenna Reflector, ADVANCED ELECTROMAGNETICS, VOL. 6, NO. 3, Oct. 2017.
    View Article

  22. Arvinder Singh and Navpreet Singh, Guiding of a laser beam in a collisionless magnetoplasma channel, Journal of the Optical Society of America B, Vol. 28, Number 8, pp. 1844-1850, 2011.
    View Article

  23. MK Hedayati, et. al, Photodriven Super Absorber as an Active Metamaterial with a Tunable MolecularPlasmonic Coupling, Advanced Optical Materials, Vol. 2, Number 8, pp. 705-710, 2014.
    View Article

  24. Mady Elbahri, et. al, Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite, Light Science and Applications, Vol.4, e316, Jul. 2015.
    View Article

  25. M. S. Bawa'aneh, Ahmed M. Al-Khateeb and Yc-Ghim, Resistance and reactance of monopole fields induced by a test charge drifting off axis in a cold and collisional cylindrical plasma, Chinese Physics Letters, Vol. 35, Number 8, pp. 085101-5, 2018.
    View Article

  26. Shahin Homaeigohar and Mady Elbahri, Switchable Plasmonic Nanocomposites, Advanced Optical Materials, 7, 1801101 (133), 2019.
    View Article

  27. Hodjat Hajian, Amir Ghobadi, Bayram Butun and Ekmel Ozbay, Active metamaterial nearly perfect light absorbers: a review, Journal of the Optical Society of America B, Vol. 36, Issue 8, pp. F131-F143, (2019).
    View Article

  28. Mounir Laroussi and J. Reece Roth, Numerical calculation of the reflection, absorption and transmission of microwaves by a nonuniform plasma slab, IEEE Transactions on Plasma Science, Vol. 21, pp.366-372 (1993).
    View Article

  29. M. Laroussi, Interaction of microwaves with atmospheric pressure plasmas, Int. J. Infrared Millim. Waves, Vol. 16, pp. 2069-2083, 1995.
    View Article

  30. Bin Jie Hu, Gang Wei and Sheng Li Lai, SMM Analysis of Reflection, Absorption and Transmission from Nonuniform, Magnetized Plasma Slab, IEEE Transactions on Plasma Science, Vol. 27, pp.1131-1136 (1999).
    View Article

  31. Andrei B. Petrin, On the transmission of microwaves through plasma layer, IEEE Transactions on Plasma Science, vol. 28, pp.1000-1008 (2000).
    View Article

  32. D. L. Tang, A. P. Sun, X. M. Qiu and Paul K. Chu, Interaction of electromagnetic waves with a magnetized, nonuniform plasma slab, IEEE Transactions on Plasma Science, Vol. 31, pp.405-410 (2003).
    View Article

  33. R. Singh and A. K. Sharma, anomalous absorption of a whistler in rippled density plasma, Phys. Scripta, Vol. 82 (1), p. 015503 (2010).
    View Article

  34. M. S. Bawa'aneh, A. M. Al-Khateeb and A. S. Sawalha, Microwave propagation in a magnetized inhomogeneous plasma slab using the Appleton-Hartree magneto-ionic theory, Canadian Joural of Physics, Vol. 90, pp.241-247 (2012).
    View Article

  35. M. S. Bawa'aneh, A. M. Al-Khateeb and A. S. Sawalha, Microwave Propagation in Warm, Collisional Magnetoionic Media, IEEE Transactions on Plasma Science, vol. 41, pp.2496-2500 (2013).
    View Article

  36. M. S. Bawaaneh, A. M. Al-Khateeb, and Y.-C. Ghim, Thermal Enhancement of Absorption of EM Radiation in a Hot Magnetoplasma Slab, IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, pp. 6525 6530, 2018.
    View Article

  37. Mahdi Rahmanzadeh et. al, Analytical Investigation of Ultrabroadband Plasma Graphene Radar Absorbing Structure, IEEE Transactions on Plasma Science, Vol. 45, pp. 945-954, (2017).
    View Article

  38. A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).

  39. Yu. M. Aliev, H. Schl¨uter, and A. Shivarova, Guided- Wave-Produced Plasmas (Springer, Berlin, 2000), p. 31.
    View Article

  40. I. P. Shkarofsky, Generalized Appleton-Hartree Equation for Any Degree of Ionization and Application to the Ionosphere. Proceedings of the IRE, Vol. 49 (12), pp. 1857-1871, 1961.
    View Article

  41. Curtis C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, New York, 1965).

  42. N.A. Kral and A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, 1973).

  43. D. B. Melrose, Instabilities is Space and Laboratory Plasma, Cambridge University Press, 1986.
    View Article

  44. S. Peter Gary, Theory of Space Plasma Microinstabilities, Cambridge Atmospheric and Space Science Series, 2005.

  45. M. S. Bawa'aneh, Stimulated Brillouin scattering of X-waves in magnetized plasma, Journal of Plasma Physics, vol. 72, part 5, pp. 68797, 2006.
    View Article

  46. M. S. Bawa'aneh and T. J. M. Boyd, Enhanced levels of stimulated Brillouin reflectivity from non- Maxwellian plasmas, Journal of Plasma Physics Vol. 73, No. 2, pp. 159-166, 2007.
    View Article

  47. M. S. Bawa'aneh, G. Assayed and S. Al-Awfi, Filamentation Instability of Electromanetic Radiation in Magnetized Plasma, IEEE Transactions on Plasma Science, Vol. 38, No. 5, pp. 1066-1072, 2010.
    View Article

  48. Alireza Paknezhad, Nonlinear Raman forward scattering of a short laser pulse in a collisional transversely magnetized plasma, Phys. Plasmas, Vol. 20, pp. 012110-1 - 012110-9, 2013.
    View Article

  49. M. S. Bawa'aneh, Ghada Assayed, M. R. Said and S. Al-Awfi Convective laser filamentation instability in magnetized plasma, Canadian Journal of Physics, Vol. 92, pp. 504-508, 2014.
    View Article