Electromagnetic physical modeling of a gallium nitride distributed transferred electron based planar waveguide structure THz oscillator

Main Article Content

C. Dalle

Abstract

The potential of a planar waveguide structure terahertz oscillator based on a gallium nitride distributed transferred electron device is theoretically investigated. The circuit numerical physical modeling relies on a two-dimensional time-domain electromagnetism/transport simulator. It is based on the coupled solution of the Maxwell and energy-momentum macroscopic transport equations. The study is focused on the analysis, from the space-time electromagnetic and electron transport quantities, of the complex CW operation of an oscillator, designed and DC biased, to optimally operate at one terahertz. The analysis is performed following a full electromagnetic approach in the time and frequency domain, at the local scale, for the description of the physical phenomena, as well as at the functional scale in order to obtain the quantities interesting the oscillator designer and user.

Downloads

Download data is not yet available.

Article Details

How to Cite
Dalle, C. (2019). Electromagnetic physical modeling of a gallium nitride distributed transferred electron based planar waveguide structure THz oscillator. Advanced Electromagnetics, 8(4), 89-102. https://doi.org/10.7716/aem.v8i4.1214
Section
Research Articles

References


  1. H. Eisele, Fundamental solid-state terahertz sources, R. E. Miles, Ed. New-york: Springer-Verlag, 2007, pp. 69-88.

  2. C. Dalle," Theoretical investigation of THz GaN mesa Transferred-Electron Device by means of time domain energy/momentum modeling", IEEE Trans. Electron Devices, Vol. ED-55, n°6, pp.1563-1567, December 2012.

  3. V. Gruzinskis, P. Shiktorov, E. Starikov, J. H. Zhao, "Comparative study of 200-300 GHz microwave power generation in GaN TEDs by the Monte Carlo technique", Semicond. Sci. Technol, 16, 798, 2001.
    View Article

  4. S. Garcia, I. Iniguez-de-la-Torre, S. Perez, J. Mateos, T. Gonzalez, "Numerical study of sub-millimeter Gunn oscillations in InP and GaN vertical diodes: dependence on bias, dopin, and length", J. Applied Physics, 114, 074503, 2013.
    View Article

  5. Z. C. Huang, R. Goldberg, J. C. Chen, Youdou Zheng, D. Brent Mott, P. Shu, "Direct observation of transferred-electron effect in GaN", App. Phys. Lett., 67(19), pp. 2825-2826, 6 november 1995.
    View Article

  6. O. Yilmazoglu, K. Mutamba, D. Pavlidis, T. Karaduman,"First observation of bias oscillations in GaN Gunn diodes on GaN substrate", IEEE Trans. Electron Devices, Vol. ED-55, n°6, pp.1563-1567, June 2008.
    View Article

  7. M. Franz, J. B. Beyer, 'The travelling-wave IMPATT mode', IEEE Trans. Microwave Theory Tech., 26, 861, 1978.
    View Article

  8. Y. Fukuoka, T. Itoh, 'Field analysis of a millimeter-wave GaAs double-drift IMPATT diode in the travelling-wave mode', IEEE Trans. Microwave Theory Tech, MTT-26, 861-865, November 1978.

  9. R. K. Mains, G. I. Haddad, 'Travelling-wave IMPATT amplifiers and oscillators', IEEE Trans. Microwave Theory Tech., MTT-34(9), 965-971, March 1985.
    View Article

  10. A. El Moussati, C. Dalle, "2D time-domain electromagnetic macroscopic numerical modelling on parallel computer: application to the mm-wave silicon DIMPATT diode", Journal of Computer Electronics, Vol. 7, pp. 34-42, 2008.
    View Article

  11. B. Baraktaroglu, H. D. Shih, 'Millemeter-wave GaAs distributed IMPATT diodes', Trans. Electron Device Letters, EDL-4(11), 393-395, November 1983.
    View Article

  12. C. Dalle, "2D time-domain numerical Maxwell/transport modelling for THz gallium nitride transferred electron device", International Journal of Numerical Modeling: electronic networks, devices and fields, Wiley, vol. 31, issue 2, March/April 2018
    View Article

  13. R. O. Grondin, S. El-Ghazly, S. Goodnick, 'A review of global modeling of charge transport in semiconductors and full-wave electromagnetics', IEEE Trans. Microwave Theory Tech., MTT-47(6), 817-829, 1999.
    View Article

  14. C. Dalle, F. Dessene, J.-L. Thobel, "Theoretical investigation of THz GaN mesa Transferred-Electron Device by means of time domain energy/momentum modeling", IEEE Transactions on Electron Devices, Vol. 59, N°12, pp. 3321-3326, December 2012.
    View Article

  15. M. Lundstrom, 'Fundamentals of carrier transport', Second edition,Cambridge University Press, December 2000.
    View Article

  16. K. Blotekjaer, 'Transport equations for electrons in two-valley semiconductors', IEEE Trans. Electron Devices, Vol. 17, pp. 38-47, 1970
    View Article

  17. R. K. Mains, G. I. Haddad, P. A. Blakey, 'Simulation of GaAs IMPATT diodes including energy and velocity transport equations', IEEE Trans. Electron Devices, Vol. 30, n°10, pp. 1327-1338, October 1983.
    View Article

  18. A. de Mari,'An accurate numerical one-dimensional solution of the P-N junction under arbitrary transient conditons', Solid-State Electronics, SSE-11, 1021-1053, 1968.
    View Article

  19. M. Shur, 'Influence of non uniform field distribution on frequency limits of GaAs field effect transistors', Electronics Letters, 12, 615-616, 1976.
    View Article

  20. K. S. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media', IEEE Trans. Antennas Propagat., AP-14(3), 302-307, may 1966.
    View Article

  21. E. H. Twizell, "Computational methods for partial differential equations", Ellis Horwood Series Mathematics and its applications, John Wiley & Sons, 1984.

  22. T. Namiki, 3-D-ADI-FDTD method - Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations, IEEE Trans. Microwave Theory and Techniques, 48, 10, 1743( 2000).
    View Article

  23. Cholewski. Mathematical methods for digital computers. Ed. E. L. Wachpress, Wiley, New-York (1967).

  24. M.-R. Friscourt, P. A. Rolland, A. Cappy, E. Constant, G. Salmer, 'Theoretical Contribution to the Design of Millimeter-Wave TEO's', IEEE Trans. Electron Devices, vol. ED-30, no. 3, pp. 223-229, March 1983.
    View Article

  25. U. S. Inan, R. A. Marschall, "Numerical Electromagnetics: The FDTD method", Cambridge University Press, 2011.

  26. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetics-field equations", IEEE Trans. on Electronmagnetic compatibility, Vol. EMC-23, N°4, November 1981.
    View Article