Reconsidering Ampere’s Double Layer Representation for Magnetic Field, Evaluation in a NDE Dection of a zero volume crack

Main Article Content

M. Poloujadoff
L. Bettaieb
H. Kokabi

Abstract

The paper has two different objectives. The first one is to  show that Ampere’s double layer method, which is equivalent  to one of the Maxwell equations, leads to the integration of a  simple closed form expression, thus avoiding the need to solve  complicated partial differential equations. The second aim is  to study the case of a zero volume defect in a NDE problem by  a perturbation method and the introduction of a double layer.  The combination of these two techniques leads to a very fast  solution of the problem. A practical example including

Downloads

Download data is not yet available.

Article Details

How to Cite
Poloujadoff, M., Bettaieb, L., & Kokabi, H. (2014). Reconsidering Ampere’s Double Layer Representation for Magnetic Field, Evaluation in a NDE Dection of a zero volume crack. Advanced Electromagnetics, 3(1), 1-7. https://doi.org/10.7716/aem.v3i1.120
Section
Research Articles

References


  1. Y. Gotoh, A. Kiya, N. Takahashi, Electromagnetic Inspection of Outer Side Defect on Steel Tube With Steel Support Using 3-D Nonlinear FEM Considering Non-Uniform Permeability and Conductivity, IEEE Transaction on Magnetics, vol. 46, no. 8, pp. 3145-3148, 2010.
    View Article

  2. R. Hamia, C. Cordier, S. Saez, C. Dolabdjian, Eddy-Current Nondestructive Testing Using an Improved GMR Magnetometer and a Single Wire as Inducer: A FEM Performance Analysis, IEEE Trans. Magn., vol. 46, no. 10, pp. 3731–3737, 2010.
    View Article

  3. C. V. Dodd, W. E. Deeds, Analytical solutions to eddy-current probe-coil problems, Journal of Applied Physics, vol. 39, no. 6, pp. 2829-2838, 1968.
    View Article

  4. C. V. Dodd, W. E. Deeds, Integral solutions to some eddy current problems, International Journal of Nondestructive Testing, vol. 1, pp. 29-90, 1969.

  5. L. Bettaieb, H. Kokabi, M. Ploujadoff, A. Sentz and A. Tcharkhtchi, Fatigue and/or crack detection in NDE, Nondestructive Testing and Evaluation, vol. 24, no. 4, pp. 1-12, 2009.

  6. Y. Cha, K. H. Kim, J. Shon, Y. H. Kim, and J. Kim, Surface flaws detection using AC magnetic field sensing by a thin film inductive microsensor," IEEE Trans. Magn., vol. 44, no. 11, pp. 4022–4025, 2008.
    View Article

  7. C. Cordier, S. Saez, S. Lebargy, and C. Dolabdjian, Accurate steel tube axis alignment in nondestructive evaluation probe, IEEE Trans. Magn., vol. 44, no. 10, pp. 2409–2413, 2008.
    View Article

  8. Y. Hatsukade, S. Okumo, K. Mori, and S. Tanaka, Eddy-current-based SQUID-NDE for detection of surface flaws on copper tubes, IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 780–783, 2007.
    View Article

  9. S. Hirano, Y. Inada, E. Matsumoto, A. Saito, K. Aizawa, M. Matsuda, S. Kuriki, and S. Ohshima, SQUID nondestructive testing system with vibrating normal pick-up coil, IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 788–791, 2007.
    View Article

  10. K. Tsukada, T. Kiwa, T. Kawata, and Y. Ishihara, Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation, IEEE Trans. Magn., vol. 42, no. 10, pp. 3315–3317, 2006.
    View Article

  11. K. Chomsuwan, S. Yamada, M. Iwahara, H. Wakiwaka, and S. Shoji, "Application of eddy current testing technique for high-density doublelayer printed circuit board inspection," IEEE Trans. Magn., vol. 41, no. 10, pp. 3619–3321, 2005.
    View Article

  12. N. V. Nair, V. R. Melapudi, H. R. Jimenez, X. Liu, Y. Deng, Z. Zeng, L. Udpa, T. J. Moran, and S. S. Udpa, A GMR-based eddy current system for NDE of aircraft structures, IEEE Trans. Magn., vol. 42, no. 10, pp. 3312–3314, 2006.
    View Article

  13. W. S. Dunbar, The volume integral method of eddy current modeling, Journal of Nondestructive Evaluation, vol. 5, no. 1, pp. 9-14, 1985.
    View Article

  14. S. M. Nair, J. H. Rose, Electromagnetic induction (eddy currents) in a conducting half-space in the absence of in homogeneities: a new formalism, Journal of Applied Physics, vol. 68, no. 12, pp. 5995-6009, 1990.
    View Article

  15. Z. Zeng, L. Udpa, S. S. Udpa, and M. S. C. Chan, Reduced magnetic vector potential formulation in the finite element analysis of eddy current nondestructive testing, IEEE Trans. Magn., vol. 45, no. 3, pp. 964–967, 2009.
    View Article

  16. J. H. McWhirter, J. J. Oravec, and R. W. Haack, Computation of magnetic fields in three-dimensions based on Fredholm integral equations, IEEE Transaction on Magnetics, vol. 18, n° 2, pp. 373-377, 1982.
    View Article

  17. T. Morisue, A new formulation of the magnetic vector potential method in 3-D multiply connected regions, IEEE Trans. Magn., vol. 24, no. 1, pp. 90–93, 1988.
    View Article

  18. O. Biro, K. Preis, and W. Renhart, Finite element analysis of 3D multiply connected eddy current problems, IEEE Trans. Magn., vol. 25, no. 5, pp. 4009–4011, 1989.
    View Article

  19. Y. Le Bihan, J. Pavo and C. Marchand, Calculation of ECT signal of a minute crack by FEMBIM hybrid method, Eur. Phys. J. Appl. Phys., vol. 28, pp. 355-360, 2004.
    View Article

  20. A. Ruosi, M. Valentino, G. Pepe, V. Monebhurrn, and D. Lesselier, High T_c SQUIDs and eddy-current NDE/: a comprehensive investigation from real data to modeling, Meas. Sci. Techno. vol. 11, pp. 1639-1648, 2000.
    View Article

  21. J. Bird, T. A. Lipo, A 3-D magnetic charge finite-element model of an electrodynamic wheel, IEEE Transaction on Magnetics, vol. 44, n° 2, pp. 253-265, 2008.
    View Article

  22. L. Codecasa, P. Dular, R. Specogna, F. Trevisan, A Perturbation Method for the T-Ω Geometric Eddy-Current Formulation, IEEE Transaction on Magnetics, vol. 46, no. 8, pp. 3045 - 3048, 2010.
    View Article

  23. M. Ya. Antimorov, A. A. Kolyshkin, R. Vaillancourt, Application of a perturbation method to the solution of eddy current testing problems, IEEE Transaction on Magnetics, vol. 30, no. 3, pp. 1247-1250, 1994.
    View Article

  24. I. El Nahas, B. Szabados, M. Poloujadoff, R. Findlay, and X. Wu, A three-dimensional electromagnetic field analysis technique utilizing the magnetic charge concept, IEEE Transaction on Magnetics, vol. 23, no. 5, pp. 3853-3859, 1987.
    View Article

  25. R. L. Stoll, The analysis of eddy currents, Oxford: Clarendon press, 1974.

  26. L. Bettaieb, H. Kokabi, M. Poloujadoff, A. Sentz, and H. J. Krause, Analysis of Some Non Destructive Evaluation Experiments Using Eddy Currents, Research in Nondestructive Evaluation, vol. 20, no. 3, pp. 159-177, 2009.
    View Article

  27. L. Bettaieb, H. Kokabi, M. Poloujadoff, A. Sentz, V. Moser, and C. Coillot, Comparison Of The Use Of SQUID an Hall Effect Sensors In NDE, Materials Evaluation, vol. 68, no. 5, pp. 535-541, 2010.

  28. J. A. Tegopoulos and E. E. Kriezis, Eddy currents in linear conducting media, studies in electrical and electronics engineering, vol. 16, Amsterdam: Elsevier, 1985.

  29. C. V. Dodd, The use of computer-modeling for eddy current testing, research techniques in nondestructive testing, vol. III, edited by R. S. Sharpe (ed.). London: Academic Press, pp. 429-479, 1977.

  30. P. Leroy, C. Coillot, V. Mosser, A. Roux and G. Chanteur, Use of magnetic concentrator to highly improve the sensitivity of Hall effect sensors, Sensor Letters, vol. 5, no. 1, pp. 162-166, 2007.
    View Article