An introduction to fractional calculus Numerical methods and application to HF dielectric response

Main Article Content

A. Persechino

Abstract

The aim of this work is to introduce the main concepts of Fractional Calculus, followed by one of its application to classical electrodynamics, illustrating how non-locality can be interpreted naturally in a fractional scenario. In particular, a result relating fractional dynamics to high frequency dielectric response is used as motivation. In addition to the theoretical discussion, a comprehensive review of two numerical procedures for fractional integration is carried out, allowing one immediately to build numerical models applied to high frequency electromagnetics and correlated fields.

Downloads

Download data is not yet available.

Article Details

How to Cite
Persechino, A. (2020). An introduction to fractional calculus. Advanced Electromagnetics, 9(1), 19-30. https://doi.org/10.7716/aem.v9i1.1192
Section
Review Articles

References


  1. Ross, B. Fractional Calculus and its Applications. (Lecture Notes in Mathematics) 1ed. Berlin: Springer, 1975. 381 p.
    View Article

  2. Hermann, R. Fractional Calculus: an introduction for physicists. 1ed. Singapore: World Scientific Publishing, 2014. 479 p.
    View Article

  3. Tarasov, V. E. Review of Some Promising Fractional Physical Models. International Journal of Modern Physics B. v. 27. n. 9 1-38. 2013.
    View Article

  4. Oughstun, K. E. Electromagnetic and Optical Pulse Propagation 1: Spectral Representations in Temporally Dispersive Media. (Springer Series in Optical Sciences) 1ed. New York: Springer, 2006. 456 p.

  5. Hilfer, R. Applications of fractional calculus in physics. 1ed. Singapore: World Scientific Publishing, 2000. 463 p.
    View Article

  6. Jonscher, A. K. The 'universal' dielectric response. Nature. v. 267. n. 673-679. 1977.
    View Article

  7. Jonscher, A. K. Dielectric relaxation in solids. Journal of Physics D: Applied Physics. v. 32. n. R57. 1999.
    View Article

  8. Tarasov, V. E. Universal electromagnetic waves in dielectric. Journal of Physics: condensed matter. v. 20. n. 17 175223. 2008.
    View Article

  9. Tarasov, V. E. Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media. (Nonlinear Physical Sciences Series) 1ed. Beijing: Higher Education Press, 2010. 504 p.
    View Article

  10. Tarasov, V. E. Fractional integro-differential equations for electromagnetic waves in dielectric media. Theoretical and Mathematical Physics. v. 158. n. 3 355-359. 2009.
    View Article

  11. Samko, S.G.; Kilbas, A. A.; Marichev, O. I. Fractional Integrals and Derivatives: theory and applications. 1ed. Singapore: Gordon and Breach Science Publishers, 1993. 976 p.

  12. Oldham, K. B.; Spanier, J. The Fractional Calculus:Theory and Applications of Differentiation and Integration to Arbitrary Order. 1ed. New York: Dover Publications, 2006. 256 p.

  13. Greiner, W.. Classical Electrodynamics. (Classical Theoretical Physics) 1ed. New York: Springer, 1998. 555 p.
    View Article

  14. Dahlquist, G.; Björck, Å. Numerical Methods. (Dover Books on Mathematics) 1ed. New York: Dover Publications, 2003. 573 p.

  15. Ralston, A,; Rabinowitz, P. A First Course in Numerical Analysis. (Dover Books on Mathematics) 2ed. New York: Dover Publications, 2001. p.

  16. Golub, G. H.; Ortega, J. M. Scientific Computing and Differential Equations: An Introduction to Numerical Methods. 1ed. San Diego: Academic Press, 1991. 337 p.

  17. Lubich, C. Discretized Fractional Calculus. SIAM Journal on Mathematical Analysis. v. 17. n. 3 704-719. 1986.
    View Article

  18. Matthys, J. A-Stable linear multistep methods for Volterra Integro-Differential Equations. Numerische Mathematik. v. 27. n. 1 85-94. 1976.
    View Article

  19. Wolkenfelt, P. H. M. Reducible quadrature methods for Volterra integral equations of the first kind. BIT Numerical Mathematics. v. 21. n. 2 232-241. 1981.
    View Article

  20. Lubich, C. Convolution quadrature and discretized operational calculus. I. Numerische Mathematik. v. 52. n. 2 . 1988.
    View Article

  21. Lubich, C. Convolution quadrature and discretized operational calculus. II. Numerische Mathematik. v. 52. n. 4 . 1988.
    View Article

  22. Li, C.; Zeng, F. Numerical Methods for Fractional Calculus. (Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series) 1ed. Abingdon: Chapman and Hall/CRC, 2015. 281 p.

  23. de Oliveira, E. C.; Machado, J. A. T. A review of definitions for fractional derivatives and integrals. Mathematical Problems in Engineering. v. 2014. n. 2014 . 2014.
    View Article

  24. Tarasov, V. E. No violation of the Leibniz rule. No fractional derivative. Communications in Nonlinear Science and Numerical Simulation. v. 18. n. 11 2945 - 2948. 2013.
    View Article

  25. Ortigueira, M. D.; Machado, J. A. T. . Journal of Computational Physics. v. 293. n. 4-13. 2015.
    View Article

  26. Whittaker, K. A.; Keaveney, J.; Hughes, I. G.; Adams, C. S. Hilbert transform: Applications to atomic spectra. Physical Review A. v. 91. n. 032513. 2015.
    View Article

  27. Garrappa, R.; Mainardi, F.; Maione, G. Models of dielectric relaxation based on completely monotone functions. Fractional Calculus and Applied Analysis. v. 19. n. 5 1105-1160. 2016.
    View Article

  28. Zhao, X.; Peng, G.; Jiang, X.; Liu, W.; Zhan, Z.; Meng, W.; Wang, Y.; Song, T.; Li, J.,; Feng, H. Investigation of relaxation process in poly(vinylidene fluoride-hexafluoropropylene) using dielectric relaxation spectroscopy. Journal of Materials Science: Materials in Electronics. v. 27. n. 1 718-723. 2016.
    View Article

  29. Gao, Y.; Chen, Z.; Tu, W.; Li, X.; Tian, Y.; Liu, R.; Wang, L. Anomaly in dielectric relaxation dispersion of glass-forming alkoxy alcohols. The Journal of Chemical Physics. v. 142. n. 21 214505. 2015.
    View Article

  30. Coughlan, J. J.; Hill, A. T.; Logemann, H. The Z-transform and linear multistep stability. IMA Journal of Numerical Analysis. v. 27. n. 1 45-73. 2007.
    View Article

  31. Galeone, L.; Garrappa, R. On Multistep Methods for Differential Equations of Fractional Order. Mediterranean Journal of Mathematics. v. 3. n. 3 565-580. 2006.
    View Article

  32. Lubich, Ch. IMA Journal of Numerical Analysis. IMA Journal of Numerical Analysis. v. 3. n. 4 439-465. 1983.
    View Article

  33. Lovoie, J.; Olser, T.; Tremblay, R. Fractional Derivatives and Special Functions. SIAM Review. v. 18. n. 2 240-268. 1976.
    View Article

  34. Scilab Enterprises. Scilab: Free and Open Source software for numerical computation (Linux, Version 6.0.1).2012. Available in http://www.scilab.org.

  35. Li, C.; Chen, A.; Ye, J. Numerical approaches to fractional calculus and fractional ordinary differential equation. Journal of Computational Physics. v. 230. n. 9 3352-3368. 2011.
    View Article

  36. Aberge, R.; Moisan, L. Fast and accurate evaluation of a generalized incomplete gamma function. 2016. Available in https://hal.archives-ouvertes.fr/hal-01329669.