A Simple Electromagnetic Analysis of Magnetic NDE Using a Double Rectangular Coil an a Hall Effect Sensor

Main Article Content

L. Bettaieb
H. Kokabi
M. Poloujadoff


In this paper a simple analysis and measurement in eddy current NDE are presented. A Hall probe is associated to a double Printed Circuit Board PCB. The configurations examined involve the coil in air and the coil above aluminum plates, either with or without cracks of various depths. The agreement between experimental and theoretical results is very good, showing that a very simple model accurately describes the electromagnetic fields.


Download data is not yet available.

Article Details

How to Cite
Bettaieb, L., Kokabi, H., & Poloujadoff, M. (2012). A Simple Electromagnetic Analysis of Magnetic NDE Using a Double Rectangular Coil an a Hall Effect Sensor. Advanced Electromagnetics, 1(3), 79-84. https://doi.org/10.7716/aem.v1i3.119
Research Articles


  1. C. V. Dodd, W. E. Deeds, Analytical solutions to eddy-current probe-coil problems, Journal of Applied Physics, vol. 39, n° 6, pp. 2829-2838, 1968.
    View Article

  2. C. V. Dodd, W. E. Deeds, Integral solutions to some eddy current problems, International Journal of Nondestructive Testing, vol. 1, pp. 29-90, 1969.

  3. S. M. Nair, J. H. Rose, Electromagnetic induction (eddy currents) in a conducting half-space in the absence of in homogeneities: a new formalism, Journal of Applied Physics, vol. 68, n° 12, pp. 5995-6009, 1990.
    View Article

  4. J. O. Fava, and M. C. Ruch, Calculation and simulation of impedance diagrams of planar rectangular spiral coils for eddy current testing, NDT&E International, vol. 39, pp. 414-424, 2006.
    View Article

  5. T. P. Theodoulidis, and E. E. Kriezis, Impedance evaluation of rectangular coils for eddy current testing of planar media, NDT&E International, vol. 35, pp. 407-414, 2002.
    View Article

  6. J. R. Bowler, and T. P. Theodoulidis, Coil impedance variation due to induced current at the edge of a conductive plate, Journal of physics D: Applied Physics, vol. 39, pp. 2862-2868, 2006.
    View Article

  7. H. Weinstock and M. Nisenoff, Non-destructive evaluation of metallic structures using a SQUID gradiometer, SQUID '85, Proc. 3rd International Conference on Superconducting Quantum Devices, Hahlbohm H.D. and Lubbig H., Eds., 843--847, de Gruyter, Berlin, 1985.

  8. H. Weinstock, SQUID Sensors: fundamentals, fabrications and applications, NATO ASI series E: Applied Science, Kluwer Academic Publishers, 1996.

  9. J. Clarke, SQUIDS, Scientific American, pp. 46-53, 1994.
    View Article

  10. G. B. Donaldson, SQUID sensors, Kluwer, Dordrecht, NL, pp. 599-628, 1996.

  11. J. P. Wikswo, SQUID magnetometers for biomagnetism and nondestructive testing: important questions and initial answers, IEEE Trans. Appl. Supercond, vol. 5, n° 2, pp. 74-120, 1995.
    View Article

  12. J. Clarke, A. I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, Volume I, Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim, 2004 et 2006.

  13. W. G. Jenks, S. S. H. Sadeghi and J. P. Wiskswo, SQUIDS for NDE, J. Phys. D 30, pp. 293-323, 1997.
    View Article

  14. J. A. Lobera-Serrano, J. R. Claycomb, J. H. Miller, K. Salama, Hybrid double D sheet-inducer for SQUID based NDT, IEEE Trans. On Mag., vol. 11, no. 1, pp. 1283-1286, 2001.

  15. D. Hong-Sheng, J. Zhong-Sheng, L. Li-Jun, Development of high Tc SQUID system for nondestructive evaluation, Journal of superconductivity and novel magnetism, vol. 21, no. 4, pp. 253-257, 2008.
    View Article

  16. Poulakis,Theodoulidis, http://ww.ndt.net/article/hsndt2007/files/Poulakis_Theodoulidis.pdf

  17. J. R. Bowler and T. Theodoulidis, Coil impedance variation due to induced current at the edge of a conductive plate, Journal of Physics D: Applied Physics, 39:2862--2868, 2006.
    View Article

  18. M. Ya. Antimirov, A. A. Kolyshkin, and R. Vaillancourt, Application of a perturbation to the solution of eddy current testing problems, IEEE Trans. on Mag., vol. 30, no. 3, pp. 1247-1252, 1994.
    View Article

  19. N. Tsopelas, N. J. Siakavellas, Performance of circular and square coils in electromagnetic-thermal non-destructive inspection, NDT&E International vol. 40, pp. 12-28, 2007.
    View Article

  20. A. I. Rusinov, High precision computation of solenoid magnetic fields by Garrett's methods, IEEE, Trans. on Mag., vol.30, n° 4, 2004.

  21. J. T. Conway, Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions, IEEE Trans. on Mag., vol. 37, n° 4, 2001, Research in nondestructive evaluation, vol. 20, no. 3, pp. 159-177, 2009.

  22. L. Bettaieb, H. Kokabi, M. Poloujadoff, A. Sentz, H. J. Krause, and C. Coillot, Comparison of the use of SQUID an Hall effect sensors in NDE, Materials Evaluation, vol. 68, n°5, pp. 535-541, 2010.

  23. L. Bettaieb, H. Kokabi, M. Poloujadoff, A. Sentz, and H. J. Krause, Analysis of some non destructive evaluation experiments using eddy current, Research in Nondestructive Evaluation, vol. 20, no. 3, pp. 159-177, 2009.
    View Article

  24. P. Leroy, C. Coillot, V. Mosser, A. Roux and G. Chanteur, Use of magnetic concentrator to highly improve the sensitivity of Hall effect sensors, Sensor Letters, vol. 5, n° 1, pp. 162-166, 2007.
    View Article

  25. F. Sarreshtedari, S. Razmkhah, N. Hosseini, K. Mehrany, H. Kokabi, H. J. Krause, J. Schubert, M. Banzet, and M. Fardmanesh, Analytical model for the extraction of flaw-induced current interactions for SQUID NDE, IEEE Transactions on Applied Superconductivity, vol. 21, no. 4, pp. 3442-3446, 2011.
    View Article

  26. Mehdi Fardmanesh, Farrokh Sarreshtedari, Arash Pourhashemi, Elnaz Ansari, Mohammad A. Vesaghi, Juergen Schubert, Marko Banzet, and H. J. Krause, Optimization of NDE Characterization Parameters for a RF-SQUID Based System Using FEM Analysis, IEEE Transactions on applied Superconductivity, vol. 19, no. 3, pp. 791-795, 2009.
    View Article