Flattened zero dispersion Photonic crystal fibers with embedded nano holes and ultra low confinement loss for supercontinuum generation

Main Article Content

K. F. Fiaboe
P. Kumar
J. S. Roy

Abstract

In this paper unique photonic crystal fiber (PCF) structure with nanoholes embedded have been studied. Embedded nanoholes have been filled with different materials of alcoholic groups like butanol, ethanol, methanol and propanol. Investigations of these structure shows flattened zero dispersion in visible range to far infrared regions. Simulated PCF structure reports ultra-low confinement loss of the order of 10-8 dB/km. Designed PCF promises to give large nonlinear coefficient of 3000 W-1Km-1 at 1335nm wavelengths. Numerical simulation of the fiber for the generation of supercontinuum generation (SCG) has been performed. Low power pump pulses of 50fs duration have been used. With a fiber of length of 15cm and pulses of 1kW, 2kW, 5kW and 10kW peak power, supercontinuum broadening of about 607nm, 908nm, 1987nm and 2405nm respectively.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fiaboe, K., Kumar, P., & Roy, J. (2019). Flattened zero dispersion Photonic crystal fibers with embedded nano holes and ultra low confinement loss for supercontinuum generation. Advanced Electromagnetics, 8(4), 7-15. https://doi.org/10.7716/aem.v8i4.1076
Section
Research Articles

References


  1. J C. Knight, T. A. Birks, P. Russell, D. M. Atkin,"All-silica single mode optical fiber photonic crystal cladding", Optics letters, vol. 21, pp.1547-1551, 1996.
    View Article

  2. M. Dudley. G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber", Rev. Mod. Phys, vol. 78, issue-4, pp. 1135-1141, 2006.
    View Article

  3. M. Sharma, N. Borogohain, and S. Konar, "Index guiding photonic crystal fibers with large birefringence and walk-off", IEEE J. Lightwave Technol. vol. 31, pp. 3339-3344, 2013.
    View Article

  4. O. V. Shulika et al., "Characterization of all-normal-dispersion microstructured optical fiber via numerical simulation of passive nonlinear pulse reshaping and single-pulse flat-top supercontiuum", J. Nanophotonics vol. 8, pp. 83-89, 2014.

  5. H. Saghaei, M. Ebnali-Heidari, M. K. Moravvej-Farshi, "Mid infrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers", Appl. Opt., vol. 54, issue-8, pp. 2072-2079, 2015.
    View Article

  6. V.Q. Nguyen, J.S. Sanghera, F. H. Kung, I. D. Aggarwal, I. K. Lloyd, "Effect of temperature on the absorption loss of chalcogenide glass fibers", Appl. Opt., vol. 38, issue-15, pp.3206-3213, 1999.
    View Article

  7. T. A. Birks, J. C. Knight, P. St, J. Russell, "Endlessly single-mode photonic crystal fiber", Opt. Lett. Vol. 22, pp. 961-963, 1997.
    View Article

  8. X. Freng, et al., "Single-Mode tellurite glass holey fibre with extremely large mode area for nonlinear applications", Opt. Express, vol. 16 (18), pp.13651-13655, 2008.
    View Article

  9. G. K. M. Hasanuzzaman, S. Rana, M. S. Habib, "A novel low loss, highly birefringent photonic crystal fiber in THz regime", IEEE Photon. Technol. Lett., vol. 28, issue-8, pp. 899-902, 2016.
    View Article

  10. K.P. Hansen, "Dispersion flattened hybrid-core non-linear photonic crystal fiber", Opt. Express vol. 11, pp.1503-1509, 2003.
    View Article

  11. J. Wang, C. Jiang, W. Hu, M. Gao, "Properties of index guided PCF with air core", Opt. Laser Technol., vol. 39, pp. 317-321, 2006.
    View Article

  12. J. C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, "Photonic band gap guidance in optical fibers", Science, vol. 282 pp. 1476-1478, 1998.
    View Article

  13. A. Ferrando, E. Silvestre, P. Andres, "Nearly zero ultra-flattened dispersion in photonic crystal fibers," Opt. Lett., vol. 25, pp.790-792, 2000.
    View Article

  14. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, D.J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers", Opt. Express, vol. 13, pp. 3728 - 3736, 2005.
    View Article

  15. T. L Wu, C. H. Chao, "A novel ultra-flattened Dispersion Photonic Crystal fibers", IEEE Photon. Technol. Lett., vol. 17, pp. 67-69, 2005.
    View Article

  16. P. Kumar, V. Kumar, J. S. Roy, "Design of quad core photonic crystal fiber with flatteneed zero dispersion", International Journal of Electronics Communicationtios (AEU), Vol. 98, pp. 265-272, Nov. 2018.
    View Article

  17. X. Lei, "Highly nonlinear with low confinement losses square photonic crystal fiber based on a four-hole unit", Infrared Phy. Technol., vol. 66, pp. 29-33, 2014.
    View Article

  18. G. Jiang, Y. F, Y. Haung, "High birefringence rectangular- hole photonic crystal fiber", Optical Fiber Technology, vol. 26, part B, pp. 163-171, Dec., 2015.
    View Article

  19. J-S Chiang, T-L Wu, "Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF)", Opt. Comm. Vol. 258, 2006.
    View Article

  20. S. M. A. Razzak, Y. Namihira, F. Begum, S. Kaijage, N. Zou, "Design of a decagonal photonic crystal fiber with ultra-Flattened chromatic dispersion", IEICE Trans. Electron., E89-C (6), pp. 830-837, 2006.

  21. P. Kumar, Rohan, V. Kumar, J. S. Roy, "Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss," Optik vol. 144, pp. 363-369, 2017.
    View Article

  22. K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express, vol. 13, pp. 8365-8371, 2005.
    View Article

  23. M. Zhang, F. Zhang, Z. Zhang, and X. Chen, "Dispersion ultra-flattened square-lattice photonic crystal fiber with small effective mode area and low confinement loss," Optik, vol. 125, pp. 1610-1614, 2014.
    View Article

  24. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. Vol. 25, pp. 25-27, 2000.
    View Article

  25. P. A. Anderson, C. Peucheret, K. Hiligose, K. S. Berg, K. P. Hasen, P. Jeppesen, "Supercontinuum generation in a photonic crystal fiber using picosecond pulses at 1550nm", ICTON/ESPC'03, pp. 66-69, 2003.

  26. A. Hartung, A. M. Heidt and H. Bartelt, "Design of all normal dispersion microstructured optical fibers for pulse preserving supercontinuum generation", Opt. Express, vol. 19, pp. 7742-7749, 2011.
    View Article

  27. A. Aguirre, N. Nishizawa, J. G. Fujomoto, W. Seitz, M. Lederer, D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800nm and 1300nm", Opt. Express, vol. 14, pp. 1145-1160, 2006.
    View Article

  28. A. Mandilara, C. Valagiannopoulos, and V. M. Akulin, "Classical and quantum dispersion-free coherent propagation by tailoring multimodal coupling" Physical review, vol. 99, pp. 02349(1)-02349(8), 2019.
    View Article

  29. Ming-Jun Li ; D. A. Nolan, "Optical Transmission Fiber Design Evolution", Journal of Lightwave Technology , vol. 26 ,no. 9, pp. 1079-1092, May 2008.
    View Article

  30. S. M. Abdur Razzak, Yoshinori Namihira, "Proposal for highly nonlinear dispersion flattened octagonal photonic crystal fibers", IEEE Photonics Technol. Lett., vol. 20(4), pp.249-251, 2008.
    View Article

  31. A. Camerlingo, X. Feng, F. Poletti, G.M. Ponzo, F. Parmigiani, P. Horak, M.N. Petrovich, P. Petropoulos, W. H. Loh, D.J. Richardson "Near-zero dispersion highly nonlinear lead-silicate W-type fiber for application at 1.55um", Opt. Exp. vol. 18(15), pp.15747-15756, 2010.
    View Article

  32. K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, vol. 12, pp. 2027-2032, 2004.
    View Article

  33. L. Dong, B. K. Thomas, and L. Fu, "Highly nonlinear silica suspended core fibers," Opt. Express, vol. 16, 16423-16430.
    View Article

  34. V. Finazzi, T.M. Monro, and D.J. Richardson, "Small-core silica suspended core fibers: nonlinearity and confinement loss trade-offs", J. Opt. Soc. Am. B , vol. 20, pp. 1427-1436, 2003.
    View Article

  35. C. Valagiannopoulos and P. G. Lagoudakis , "Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical approach", Journal of the Optical Society of America B, Vol. 35, no. 5, pp. 1105-1112, 2018.
    View Article

  36. R. Bhattacharya and S. Konar, "Design of a Photonic Crystal Fiber with Zero Dispersion Wavelength Near 0.65 μm", Fiber and Integrated Optics, vol. 27, pp. 89-98, 2008.
    View Article

  37. A. Yu. Petrov and M. Eich , "Zero dispersion at small group velocities in photonic crystal waveguides ", Appl. Phys. Lett. , vol. 85, pp. 4866-4868, 2004.
    View Article

  38. F. Poli, A. Cucinotta, S. Selleri, "Photonic crytal fibers properties and applications", Springer series in materail sciences, 2007.

  39. A. Ghatak, K. Thyagarajan, "Introduction to Fiber optics", 1st South Asian Edition 1999.
    View Article

  40. J. D. Joannopoulos, Steven G. Johnson, Josgua N. Winn, Robert D. Mede, Photonic crystal fiber: Molding the flow of light, 2nd edition, Priceton University Press, 2008.

  41. J. M. Dudely, J. R. Tylor,"Supercontinuum generation in optical fibers", Cambridge University Press, Cambridge, UK, 2010.

  42. M. sharma, S. Konar, R. K. khan,"Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power", Journal of Nanophotonics, vol. 9, pp.1-8, 2015.
    View Article

  43. A. H. Bouk, A. Cucinotta, F. Poli, S. Selleri, "Dispersion properties of square-lattice photonic crystal fibers", Opt. Express, vol. 12, pp. 941-946, 2004.
    View Article

  44. F. Poletti, V. Finazzi, T. M. Monro, N. G. Brodreick, V. Tse, D. J. Richardson,"Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers", Opt. Express, vol. 13, pp. 3728-3736, 2005.
    View Article

  45. G. P. Agrawal, "Nonlinear Fiber Optics", (Academic Press, 2011).

  46. M. Sharma, S. Konar, "Three octave spanning supercontinuum by red-shifted dispers wave in photonic crystal fibers", Journal of Modern Optics, pp. 1-10, 2015.
    View Article

  47. G. D. Kirishna, G. Prasanan, S. K. Sudheer, V. P. M. Pillai, "Analysis of zero dispersion shift and supercontinuum generation near IR in circular photonic crystal fibers", Optik, vol. 145, pp. 599-607, 2017.
    View Article

  48. M. L. Ferhat, L. Cherbi, I. Haddouche, "Supercontinnum generation in silica photonic crystal fiber at 1.3µm and 1.65µm wavelength for optical coherence tomography", Optik, vol. 152, pp. 106-115, 2018.
    View Article

  49. M. Sharma, S. Konar, "Broadband supercontinuum generationin lead silicate photonic crystal fibers employing optical pulses of 50W peak powers", Optics Communication, vol. 380, pp. 310-319, 2016.
    View Article