Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies

Main Article Content

O. Ergul
G. Isiklar
I. C. Cetin
M. Algun

Abstract

We present computational analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies. Arrays of metallic nanoantennas are considered in an accurate simulation environment based on surface integral equations and the multilevel fast multipole algorithm developed for plasmonic structures. Near-zone responses of the designed arrays to nearby nanoparticles are investigated in detail to demonstrate the feasibility of detection. We show that both metallic and dielectric nanoparticles, even with subwavelength dimensions, can be detected.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ergul, O., Isiklar, G., Cetin, I., & Algun, M. (2019). Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies. Advanced Electromagnetics, 8(2), 18-27. https://doi.org/10.7716/aem.v8i2.1010
Section
Research Articles

References


  1. S.A. Maier, Plasmonics: fundamentals and applications, Springer, 2007.
    View Article

  2. J. Alda, J.M. Rico-Garcia, J.M. Lopez-Alonso, G. Boreman, Optical antennas for nano-photonic applications, Nanotechnology 16: 230–234, 2005.
    View Article

  3. Y. Nishijima, L. Rosa, S. Juodkazis, Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting, Opt. Exp. 20: 11466–11477, 2012.
    View Article

  4. Y.M. El-Toukhy, M. Hussein, M.F.O. Hameed, A.M. Heikal, M.M. Abdelrazzak, S.S.A. Obayya, Optimized tapered dipole nanoantenna as efficient energy harvester, Opt. Exp. 24: 1107–1122, 2016.
    View Article

  5. T. Kosako, Y. Kadoya, H.F. Hofmann, Directional control of light by a nano-optical yagi-uda antenna, Nat. Photonics 4: 312–215, 2010.
    View Article

  6. E.G. Mironov, A. Khaleque, L. Liu, I.S.Maksymov, H.T. Hattori, Enhancing weak optical signals using a plasmonic yagi-uda nanoantenna array, IEEE Photon. Technol. Lett. 26: 2236–2239, 2014.
    View Article

  7. D.M. Solis, J.M. Taboada, F. Obelleiro, L. Landesa, Optimization of an optical wireless nanolink using directive nanoantennas, Opt. Exp. 21: 2369–2377, 2013.
    View Article

  8. Y. Yang, Q. Li, M. Qiu, Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas, Sci. Rep. 6: 19490, 2016.
    View Article

  9. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. M¨ullen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics 3: 654–657, 2009.
    View Article

  10. T. Lohm¨uller, L. Iversen, M. Schmidt, C. Rhodes, H.- L. Tu, W.-C. Lin, J.T. Groves, Single molecule tracking on supported membranes with arrays of optical nanoantennas, Nano Lett. 12: 1717–1721, 2012.
    View Article

  11. K.B. Crozier, W. Zhu, D.Wang, S. Lin, M.D. Best, J.P. Camden, Plasmonics for surface enhanced raman scattering: nanoantennas for single molecules, IEEE J. Sel. Top. Quantum Electron. 20: 3, 2014.
    View Article

  12. M. Alavirad, L. Roy, P. Berini, Optimization of plasmonics nanodipole antenna array for sensing applications, IEEE J. Sel. Top. Quantum Electron. 20: 3, 2014.
  13. D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G.S. Kino, W.E. Moerner, Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible, Nano Lett. 4: 957–961, 2004.
    View Article

  14. E. Ustun, O. Eroglu, U.M. Gur, O. Ergul, Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies, Proc. Progress in Electromagnetics Research Symp. (PIERS), pp. 3673–3680, 2017.
    View Article

  15. B. Karaosmanoglu, A. Yilmaz, O. Ergul, A comparative study of surface integral equations for accurate and efficient analysis of plasmonic structures, IEEE Trans. Antennas Propag. 65: 3049–3057, 2017.
    View Article

  16. A. Cekinmez, B. Karaosmanoglu, O. Ergul, Integral-equation formulations of plasmonic problems in the visible spectrum and beyond," Dynamical Systems - Analytical and Computational Techniques, InTech,2017.
    View Article

  17. P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Phys. Rev. B 6: 4370–4379, 1972.
    View Article

  18. O. Ergul, L. Gurel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems, Wiley- IEEE, 2014.
    View Article

  19. B. Karaosmanoglu, A. Yılmaz, U.M. Gur, O. Ergul, Solutions of plasmonic nanostructures using the multilevel fast multipole algorithm, Int. J. RF Microwave Comput.-Aided. Eng. 26: 335–341, 2016.
    View Article