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Abstract

Nowadays, unigue characteristics of
electromagnetic wavesparticulatly, surface plasmons
supported by a specially designed tomc crystal find
numerous applicationdVe propose to exploit an evident
analogy betweersuch a photoric crystal anda structure
with a sinemodulated refractie index. The light

propagation inside the latter is described by the famous

MathieuDsdifferertial equation This application of the
MathieuDsquation can be useful for a design afltitayer
structures and also for fundamental understanding of
electromagnetic phenomeiminhomogeneous media.

1. Introduction

Photonic crystals (PCs) are matesithat possess a periodic
modulation of their refraste indices (RIs) on the scale of
the light wavelength[1]. Optical surface modes inone
dimensional photonic crystals (multilayer dielectric
mirrors) were extensively studied in the 1970s, both
theoretcally [2, 3] and experimentally4]. Twenty years
later, excitation of opticaturface wavesSW) in photonic
crystals in a Kretschmamtike configuration wasfirst
demonstrateb]. Thesestudiesrapidly led to broad use of
surface waves based on photoaigstalsin everwidening
applications in the field of optical sensdi&14]. This
technique benefits much from its unique peculiarities
namely the existence of both- and s-polarized surface
wavesenables to discriminate surface and voluefiects
Moreover, a electromagnetic fielpbenetration deptinto
an external medium isignificantly increased compared
surface plasmon polaritons (SPRpased biosensors
Surface wavedasedbiosensors permito study not only
interactions betweerelatively thin layers of proteins (and
otherbiomolecules) but also between such thiockjects as
bacteria, cells and cell organedl A direct experimental

comparison of the sensitivity of biosensors based either on

surface plasmonpolaritons or on photonic crystalsurface
waves (same as Bloch waves or Tamm stategy be

found elsewherg15]. The authors showed that a biosensor
based on photonic crystal surface waves can demonstrat

surface

electromagnetic wavesxist only for p-polarizedincident
light [17]). These gstemshave much in common with
well-known symmetricsandwich structuresuch asa thin
metal layer betweenwo infinite dielectrics known to
supportlong-rangesurface plasmonérom now on, when
this cannot lead ta confusion, we will omit the word
polaritorOand speak simply about plasmpfiks, 19] For
this casethe photonic crystalcan be characterizedor a
certain wavelengthhy the sameefractiveindex as thatof
an infinite dielectri¢ thus forming a symmetric sandwich
structure.Exploitation of such structures abledto excite
and use in practicsurface plasmonis thin Pd[12, 20]and
Co (to be submittedlayers as well as blue (at 405 nf2}l]
and UV (at 375 nmto be submittedplasmonsin thin gold
layers.Note that ifa photonic crystais not exploited for
all these cases there are no reasons to speak about plasmons
at all becauseheir propagation length is just the order of
alight wavelength

All these circumstances welinderline the necessity
of deep andphysically transparent understanding of the
details of plasmon propagation in the structures involving
photonic crystals. Certainly, ratheeffective calculation
methods, basegssentiallyon multiple reflections insidthe
multilayer structure(Fresnel formulag)do exist and are
successfully sed; see.g.KonopskyOs papg2] which, in
our opinion, is one of the best examples. St believe
that these methods are rather formal alud not clearly
reveal the physicsof the phenomenon beyondds a
consequencethey arenot indeed OintuitiefriendlyO and
correspondinglytheir prediction potentlawithout detailed
calculationgestslimiting.

In this work, we use an evident analogy betweea
onedimensionalphotoric crystal anda structure witha
sinemodulated refractie index. The propagation of light
inside the latter is described by the famddathieuOs
differential equationwhich extensive studied many years
hada considerable impact che common knowledgesee
e.g. a classic bool23] and numerous refererseherein.
Strictly speaking a photonic crystal (Fig. 1), which is a

eberiodic sequence dfielectriclayer pairs ofthicknessesi,

almost two times higher sensitivity that one based on and ds with respectively large n_=,//, and small

surface plasmopolaritors.

Quite an important particular application gfhotonic
crystalsis their use to suppotbng-rangesurfaceplasmon
polaritons existing insuchstructuresas photonic crystalb
thin meal layer D infinite dielectric[16] (of course,such

ng = /&g refractive indicesis not exactly a medium with

a sinemodulated refractive indeXSimilar situation exists
for example for electrons in crystals: planes afns do
createa periodic potential but do not creaesine potential
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Nevertheéss, this circumstance does not makean
application of the Mathigdsquation for the corresponding
problem meaninglessRather the contrary, tB same
equation appears as the tool to tackle related problems.
However, unfortunately the paradigm of the Matids
equation and its applicatioare not commonly used to
describe problems related to excitation of optical moBgs.
the present study we aim to broad applications of this
equaton and introduce ito the areaof investigation into
photonic crystad. Briefly, the present article discusses
application of the MathieuOs differential equation to design
a photonic crystaith a metal flmsupporting longrange
surface modes.

The articleis divided into five chapters:first, we
introduce the MathieuOs edaat and explain howan
electromagnetic field distribution in periodic structucas
be calculated by solving the equatide emphasize on the
requirements on its solutionshich must le fulfilled to
describe the surface modes. Second, we give numerical
examples of photonic crystals with certain parameters. The
given examples illustrate how to design a photonic crystal
to excite surface waves at a desired wavelength. Next,
solutions of the MathieuOs equation are analyzed to
demonstrate physical limits ofi¢ optical properties of the
periodic structuresfor surface wave excitation In
conclusion,an analogy was drawn between surface waves
and energyeigenstates for guantumparticle in a periodic
potential.

2. Mathieu’s equation

Below weconsider a systemfinite dielectricbfinite metal
layer D infinite periodic dielectric structurewith a sine
profile of the refractie index (PC) see Fig. 1Let the
infinite dielectric has a dielectric constanf and metal b

!, while a dielectric constant ofhe periodic structure is
given by "(z) = ",, +# "cos@/z/L), whereL is the period

of the structureandfor the momentwe identify an average
dielectric constant with 7, =/ +/g)/2,

#1=1,"1s=1, (" > 0) . A finite-thickness layer
characterized by thdielectric constant/m should not be

necessarilya metal; we will use this notation just to
simplify the terminology.

Based on the properties of surface plasmons, which
are Otransverse matjoe(TM) in natureO and on known
properties of TM electromagnetic wa\d], one can write
for theH, - compone'nt of the magnetic figlti]:

H=Hge,f(z)exp(" t#ilx), (1)

where éy is a unit vector along thgaxis (Fig. 1).For TM

"oy
Tav

modes, if we know theH, - component of the magnetic
field, the electric field components can be evaluated from
MaxwellOs equatiofi, 19]:
i IH
EX :I—_y, EZ
PP

(2)

18

Figure 1.A schematic of the studied structyret to scale)
dielectric!!' ! 1) # metal!! ! I'l 1) # photonic crystal
11 1). The dielectric constants arg,,/,/s and /,
respectively; thelast two correspond tothe dielectic
constants of the alternating kg of the photonic crystal
with the period_. The bold red line depicts the electric field
intensity distribution of a surface wave in the structure, the
dashed line images the metal layer boundary. Thface
wave propagatealorng thex-axis.

The H, - components oklectromagnetic field inside the
homogeneousnedia aregiven by solutios of appropriate
wave equatiosy whichin our caseeduce to
) ,
"2
where weintrodue k? = §#2 = (2" /)2,
The equations (2) and continuity ofettangentialH,-
field component at the interfacds! !, ! I | together
with the continuity of the tangentiet,-field component at

3)

+(K*$m! #°)H, =0,

the interfacd ! ! yield the following solution of the wave
equation
¥ Inside an infinite dielectricz! !, f,(z) =e¥

(this implies RgS,)>0; exactly this form of a solution
describes the surface waviee. a wave localizedat the

interface,
¥ Inside the metal, !'! 11 1, we have
/
f(2)=coshG,2) + L Msinh(S, 2),
S/1
¥ Inside the medium with @arying refractive indx

(PC),I' ! 1,
f3(2) = (coshg§,h) + zlmm sinh(§, h))P(z! h),
1
where P(2) is an appropriate solution dhe MathieulOs
equation (seeq. (6)below). Here the exponentiadecay
constant is given by
St = "2 H I ke (4)
The solution of the MathieuOs equation is chosen to
exponentially decrease foz" +! , and P(0) =1, which

ensures also the continuity ¢, on the interfacd ! h.
The continuity of E, at the interface! =! will be
established later on when a solutiof the MathieuOs
equation will be discussed




ADVANCED ELECTROMAGNETICS, VOL. 4, NO. 3, NOVEMBER 2015

Insidea medium with a varying refractive index (PC),
the wave equatioreducego the MathieuOs equation

d?H

—dzzy " (9" $,k*" 1 & cose#z/L))H, =0. (5)
With the variable changeu=/z/L, eq. (5) yields a
standard form ofhe MathieuDsequatior{23] which will be
in the main focus of the present study

d’H,
duzi +(a! 2qcosQu))H , =0. (6)
Herea andq are parameters given by
a= —/32L2ﬂ_2 + Eavkszﬂ_z, @)
q= —%Agkszﬂ"z. (8)

3. Surface electromagnetic waves

To obtain surface waves in the studied structure
besides a requirement gatisfy the continuity othe E,-
field componen@tz ! !, a solutiony(u) of the MathieuOs
equation should exponentially decrease ot +! . The
exponentially decreasing solutions belong to the instability
regiors of (a, g)chart of the MathieDsquation parameters
(hatched areas drig. 2, adapted fronRef. 23), which are
associated with photonic band gaps.

characteristic curves
/] instability regions
| stability regions

Figure 2. The stability chart for the solutions of the
MathieuOs equation with the paramefersq) The solid

/isinh(smh) + /icoshﬁmh) =
“m 1
- ”310) (cosh@, h) + ﬁsinh(smh))% v (0), ©)

where /5(0) is a local just near the interface, value of the
photonic crystatlielectric constant

It is natural to starfurther analysis oforopagation
modes in our systemmsing ananalogyto long-rangesurface
plasmons insymmetric sandwich structuregn which a
photonic crystalis replaced by asemiinfinite uniform
dielectric with the dielectric constant; =/;. In a thin
metal film with h! 0, the longrange surface plasmons
exist if!, ! I, I 1 [18, 19] which is necessario ensure
the continuity of thelongitudinal eledric field component
at the interfaceThis meanssee(3), that the propagation
constantis given by ” = \/Ek, sothat from (7) we obtain

the photonic crystaperiod

"Ja
21 #1,

Next, the continuity condition (Bresults iny'(0) =0, and

L= (10)

such a solutiony(U) can beconstruced as follows The

MathieuOs equation describing a magnetic fietidéna
periodic multilayerstructure (photonic crystal) is given by
eg. (6) which we rewrite as

2

% +(a! 2qcosu))y =0, (1)
u

with thefollowing relation between the parametarandq:

q=" 1#_/L_ (12)

2 (Ta" 1)

The exponentially decreasingplution of the equation(11)
has the form of y(u)=e '/ (u), where >0 is a
characteristieexponent and’ (u) is a 2/ - or / - periodic

function The continuity condition of the magnetic fietj
at the interfaces=0 requiresthat / (0) =1, sucha solution

exists [23] and canbe found To find it, the easiest
numerical methodcalledthe Oshooting methQdsupposes
to vary the value ofb in the initial condition y'(0)=b

while solving numerically theordinary differential equation
(11), and to analyze the behaviof the solution for large:

only one certain value df corresponds tan exponentially
decaying solutionlf at certain value ofiy the derivative

lines correspond to characteristic curves, the hatched areas Y (U) ly=,, =0, then allthatwe need to construetsolution

depict he instability regions, the empty areBsstability

regions.The solutions marked by the points 010 and 020 ae

analyzed in the text.

Let us now analyze theondition of thecontinuity of
E.-field component on the metBIPC interface. From now
on wedende the variableas u="(z! h)/L to place the

interface atu=0. The aforementionectontinuity condition
reads:

18

which gives rise to surface waves, i8 shift the variable
hid consider the functiony;(u)=Ce “U*) " (u+uy):;
normalization constant is so chosen thay, (0) =1. The

function

£5(2) = (cosh(s, i) + gl#m

m

sinh(S, 7)) y,("(z! h)/L) then

describes theH,-component ofthe electromagnetic field
inside the photain crystal.
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This simple consideratiogquite clearly demonstrates
the physical meaning of a photonic crystal design
supporting long-range surface plasmons The expression
(10) correspondgo an optimalselection of the thicknesses
of the alternatinglayers constituting thephotonic crystal,
while the aforementioned shifif the initial value of the
variable u is nothing else than the necessity to add an
additional(of large or small refracte index) layer with the
well-defined thickness to ensure sughopaation [22].
Moreover, we cledy see also additionalggsibilities which
appear for photonic crystélased structurdsut are lacking
for symmetricsandwich structuregor the case of photonic
crystals the conditior5;=0 is not any more necessary: even
without it, the boundargondition (9 which (again in the
limit h! 0)reads

s_ 1

/
" " ._ yll (O) 1 (13)

1 0L
still can be fulfiled. Rememberthat S, is necessarily

positivg hence we needy;'(0) >0 at theinterface: just

after the metalb PC interface,the absolute valueof
electromagnetidield vectorshould increase (of course, for
larger distances it wilkventuallydecrease according to its
exponential decaywhen u" ! ). This corresponsl to
stronger localization and deeper penetration of the
electromagneticfield inside transparent neabsorbing
medium photonic crystdl and consequentlyits weaker
localization inside adossy metal As a result, a smaller
fraction of the electromagnetfield energy is didgpated in
the metalthus leading to even larger propagation distances
of the surface wavegcompare again wittRef. 22). Note,

Ja
T#1
be recalculated from eq. (Wjith the given valugof S; and

a: this showscertain subtlety of the task to optimize
corresponding structure§his case will be discussed in
details elsewhere.

however, thaif S ! 0, also L $ but should

4. Numerical examples

In the previoussectionswe showed how the Mathi@s
equation can bepplied to design a multilayestructure
which supports longange surface plasmonSuchsurface
modes can be excited in the structure which desigeh
physical properties correspond to a paifayfq)parameters
lying in the unstableegionon the stability chart (FigR).
These parameteraccordingto eq. (7), immediately define
a pair ofL, ! values and also th®, S, valuesusing eq. (4)
As a starting pointwe will study numerically the
properties of the solutions in the firshaiable region of
negativeq and positivea. We chosehe parameteia close
to 1and parameteg such that the pai@a, q)is very close to
the characteristic curve separating stability and instability
regions (but, of course, still belongs to the instélil
region see Fig. 2, point O3OFor such a (a, q)pair,
according to the known properties of the Matksu
equation, its vanishingt infinity solution is approximately

28

given by y, (u) = e *cg (u, Q). Here theindex x is much

less than one(see Ref. 23 Fig. 11) and ce(u, q) is the
Mathieufunction describing 2/ -periodic solution of the
MathieuDsequation for the paifa, q) lying exactly on the
correspondingcharacteristic curveThis curve,when a is
slighty larger than one and small, is described by the
following expansion (eq. (17hf Ref.23):

a=1+q! g?/8! g°/64! q4/1536+11q5/36864+0&129.

The above Y, (U) solution is clearly a complete

analogue of the symmetrgandwich casdan which in the
external mdium, the magnetic field amplitude is described

by f;5(2) - Ce ¥ with S very close to zeroboth these

solutions decreasmvay from the interfaceery slowly. The
further the chose(a, q)pair from the characteristic curves
on the charis, the larger is the difference of our solution
from one for the symmetricsandwich casewe may call
these solutiongInore urstable andessperiodic)

Let us now illustrate theonsideratiorgiven above by
several numerical calculationscorresponding to real
photonic crystaktructuresFor the cas&=0, the equations
(8) and(10j fix the ratioof the parameters

q_.1 #/

a 27,
Suppose wewould like to optimizea structurewhich
suppors the surface waveat the wavelength of 739 nm
We assumetha ng =1.455, n. =2.076 (Ref. 22, such a
photonic crystahas beemuite successfullysed to support
long-rangesurface plasmons in Pd filnj2, 20) so that
£y =3.2134 Ae =1.0964 and q/a=!0.2477 using eq.

(15). For the parametera slightly largerthan 1, this ratio
defines! =111 and! =!11I" on the characteristic
curve and the optimal period of the photonic crydtaP88

nm calculated from eq. (10)o approximatelydescribe the
electromagnetic field inside thghobnic crystal we can

use the followingg-expansion of these(u,q) function (p.

21 of Ref.23):

(15)

2
_ q 9.4

ce(u,q) =cosu! =(1+=+-="—+_.)cos(3u) +

1(,9) 8(8192)()

2 2

q q.4q
+ 1+ +1—+ . Su)+...(16
1oz IF g Higg T cos5) +..(16)

It is immediately clear thatcg'(0,q) =0 hence this
function exactly corresponds to the boundarndivion we
are looking for the photonic crystal refractive indgust at
the interface is equal ta.. Analogically, for a slightly
smaller than onéelongingto the characteristic curvi@=ig.
2), themagneticfield insidea photonic crystaill be close
to the functionsg (u,q) (seeits g-expansion ap.13 of Ref.

23). The continuity condition of sg'(//2,0)=0 is
fulfiled hencethe refractve index ofthe photonic crystal
right at the interfae should beequal to// ,,, .

Now, we will look at tlose decreasing tozero
solutionsin the proximity ofa = 1 which lie betweentwo
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characteristic curvegFig. 3. We are interested in the
question either for all values & one may find sucta
solutiony(u) which at certain pints satisies the condition
»'(u) =0, or there are such values af that always

y;'(u)<0. The latter would mean that no surface

electromagnetic waves for such parametarsq exist
Numerical results attest thit the close pximity ofa = 1
(i.e. for small gq) between two characteristic curves, the
solution and its derivative arealmost periodic (Fig. 4,
grapls 1-2). Similar situation occurs whemis approaching
-6, so that the paira, q) again lies very close to the
charateristic curve.The further theoint on the chart from
the characteristic curvess, the faster the solution is
decreasing This meansthat the derivative ofsuch a
decreasing solution is mainly negative however the
numerical results show thahe derivaive is positive at
certain intervalgand, correspondinglyis equal to zero at
some pointsFig. 4graphs 35). We have checked a number
of pairs (a, g) belonging to the line of !l =1 11" |
I"#%$% (Fig. 3, Fig. 4 graph ), and for all of them the points
where y,'(u) =0 were found.

Next, we analyzedhe points described by theatio
111 =111 andlying deeper in the instability regiokor
all thechosen pointsmthis line we succeeded to finslich
initial conditionsthat the derivativewas equal tozero at
certain pointsMoreover, the chosen points belonging to the
lines! =111 constlqg! !! const, and several other
randomly chosen pointsvere still sutable to find the
solutions giving rise to the surface wayvéisough thse
pointslie quite far awayrom the characteristic curv€Big.
3, Fig. 4 graphs -3). Summarizing, despite the analyzed
points were chosen in different locat®im the region of
positive parameterl and negativeq, we could not find any
that would correspond to decreasingat infinity solution
with a derivativeneverequat to zero

28

Other instability regions of Mathieu equation which
correspond to larger values ofa, such as
a=4, 9, etc.[23], also give rise to surface waves which can
be considered quite similarly. These solutions are an
analogue ofarger order resonancas Fresnel reflection of
light inside a PC (increase of the relative phase differences
on 2zn -values) and do not seem very interesting.

Now let us note another possibility. The above
analysis suggests that we should still be able to construct a
photonic crystal supporting loagnge plasmons even if an
external medium is such thdt is larger than/,,. In such

a case, from eq. (7) we see that !; still having at our
disposal a certain finite value of¢ (and hence of]) we
are able to find such a pd@, q)that the derivative of the
corresponding functiory'(u) =0 for some values af. For

this, we again should work not too far from the curve
separating unstable region af! ! and smallg from a
narrow stable region existing for larger valueg¢éee Fig.

2 and Ref.23). For this characteristic curve, under the
condition of a negativa close to zero, we have (p. 15 of
Ref.23):

a=-q%12+7¢*1128-29%° 12304+ O(¢®). (17)

Figure 3. Thepoints of(a, q)diagram corresponding to the
analyzed solutionsof the MathieuOs equation ineth
instability region(hatched area)Depending on the solution
behavior it may describe surface moddgléd squares) or
be inappropriate because thie impossibility to fulfill the
continuity condition émpty squares)The Hack numbered
emptycircles enote(a, q)pairs for which the solution and
its derivativeare plotted below (Fig. 4). The dashed black
line corresponds ta! ! 2q (see explanation in the text).

Let us illustrate this possibility taking the same wavelength
of 739 nmand ! !'!. Then!!a! 'I"# (Fig. 2, point
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020) which gives; =1.86 and, the necessary period In this part of the chart, we again tried to fita q)
J#a pairs that would correspond to such decaying solution for

L = ————=1092 nm. Under thes@, q)parameters, which alwaysy,'(u) <0, and we succeeded to find many
211 # of them. Indeed, we observed a tendency that for the

the magnetic field componeht, inside the photonic crystal majority of la!'! 11|, a solution that can describe surface

is approximately described by/ - periodic function modes was not found byawying the initial conditions.

ce,(u,q) which satisfies the conditioo€, (0,q) =0 (p. 49

of Ref.23).

u (number of periods) u (number of periods)

Figure 4.Solutions ofthe MathieuOs equation plotted for differémt )-pairs depicted on Fig. 3The solid blue line
corresponds to the magnefield Hy,, the dashed black knbto its derivativeH',. A photonic crystal with certaiga, q}
parameters can support surface waves if its solution is decreasthg crystalscaleand its derivative goes to zero to fulfill
the continuity requirementhe inset images a zoomed region of the graph to show that the derdagago to zeroat certain
points(graphs 14, 8) ornever goes to zer@rapts 6, 7).

What is the largest value of the external medium known that Ono characteristic values exist whaeh|2q|O

dielectric constant/, achievable if#$ is limited by the (p. 690). From this and eq. %), we immediately infer that
material properti€d To answer this questipwe need to surface electromagnetic wavesannot be obtained if

use instead of eq. (17) an asymptotic description of the /, >/ . This means thahe external medium cannot have
same characteristic curve for large negativealues. This arefractive index higher timethe largest refractive index of

question is not completely trivial, but lookingg., into
LangeiOsanalysis[25] of the Mathie®sequation solutions
when at least one of ttgarameters, qis large, we found

the periodic structureAt the same timefor any /, </,

and large negativea, an appopriate photonic crystal
supporting longange plasmon propagation can be

an estimation of the typea=! |2q[+2y|q|+O(In[q]) designed However, for too small differencef refractive
(see his egs. (6)3and (7.10 and note the difference in indicesthis requiredarge values ofa| and, consequently,
notation, a=", 2q=! , in his pape; which attests that large periods of the structure which might be impossible to

lize i tice.
asymptotically limg, » (|2q]|/a)=!1, and also this is realize In practice

23
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5. Conclusions and discussion

In the present papethe application of the MathieuOs
equation to excitation of surface waves in photonic crystals
was presentedNe have disgssed a design of a multilayer
structurecoated with a thimetl film to support surface
plasmons and establishedthe necessary requirements for
the solutionsof the MathieuOs equatidescribing surface
waves First, sucha solution must vanish at the infinity (or
say, on the scale of the multilayer structure) wihic
immediately definethat one should work in the instability
regions of the MathieuOs equatgiability chart. Further,
given by eq. (9the continuity condition of the tangential
electric field component across the interface has to be
fulfilled.

A limit of a thin metal film was considereHere eq.
(9) reduces toa simple condition that the decaying at
infinity solution of the MathieuWDsequation should have
zero derivative at the interfac&/e havebriefly analyzed
for which pairs(a, g) belonging tothe different instability
regions onthe MathieuOs equatiatability diagramthis
conditioncan be fulfilled, and for whichamot (Figs. 3, 4)
Severalexamples of a real multilayetructure were given
and limits appearing for design ophotonic crysth
structures were discussetihese results constitute a base
for further development cd similar approach, for example
for the cases when tHayer thicknesses), and ds of the
photonic crystalare different. HilDsdifferential equation
[23], sometimes amed also Ogeneralized Mathieu
equation@s appropriate here.

In conclusion we would like to draw attention to an
analogy of surface waves in a multilayestructure to a
guantum particle in a periodic potential, which is also
described by the MathieuGguation[26]. Essentially, the
MathieuOs  equation if we rewrite it as

—d?uldy® + (-a+2qcos@y))u=0, can beseenas a
particular case ahe nonrelativistic stationary Schrsdinger
equation This equation(with a proper scalingjlescribes a
quantum  particle in a periodic potential

V(y) = zlq cosRy) =V, cosy) with the total energy of

the particle E =a. For a givenpotentialvalue,theremay
be certain values ofa (meansE,) for which bounded
solutions (eigenstates)can be found.Such bounded
solutionsdescribesurfacewaves, which we are interested
in, and they certainly have a zero derivativat ! ! 0,
u'(0) =0, due to the potential symmetr@bviously,there

is no eigenstatesvith the energiesE smaller than the
minimal potential valueBV, and therefore, no bounded
solutions. This analogy is an excellent illustration of the
problem d plasmon excitation none of the MathieuOs
equatios with a negative parametarsuch thata < -2|q|

is suitable for theexcitation ofsurface wavesMoreover
this reasoningexplains well that for small negativea,

surface waves cannot becied for ! %>1, which is

q
perfectly in line with the asymptotic behavior of the
parametea mentioned above.
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