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Abstract 

In modern technology, inductors are often shaped in the form 
of planar spiral coils, as in radio frequency integrated circuits 
(RFIC’s), 13.56 MHz radio frequency identification (RFID), 
near field communication (NFC), telemetry, wireless charg-
ing, and eddy current nondestructive testing devices, where 
the coils must be designed to a specified inductance. In many 
cases, the direct current (DC) inductance is a good approxi-
mation. Some approximate formulae for the DC inductance 
of planar spiral coils with rectangular conductor cross section 
are known from the literature. They can simplify coil design 
considerably. But they are almost exclusively limited to 
square coils.  
This paper derives a formula for rectangular planar spiral 
coils with an aspect ratio of up to 4.0 and having a cross-sec-
tional aspect ratio of height to width not exceeding unity. It is 
based on physical principles, hence scalable and valid for any 
dimension and inductance range.  
The formula lowers the overall maximum error from hitherto 
28 %  down to 5.6 % . For specific application areas like 
RFIC’s and RFID antennas, it is possible to reduce the do-
main of definition, with the result that the formula lowers the 
maximum error from so far 18 % down to 2.6 %. This was 
tested systematically on close to 194000 coil designs of ex-
actly known inductance. To reduce the number of dimensions 
of the parameter space, dimensionless parameters are intro-
duced. The formula was also tested against measurements 
taken on 16 RFID antennas manufactured as printed circuit 
boards (PCB’s).  
The derivation is based on the idea of treating the conductor 
segments of all turns as if they were parallel conductors of a 
single-turn coil. It allows the inductance to be calculated with 
the help of mean distances between two arbitrary points any-
where within the total cross section of the coil. This leads to 
compound mean distances that are composed of two types of 
elementary ones, firstly, between a single rectangle and itself, 
and secondly, between two displaced congruent rectangles. 
For these elementary mean distances, exact expressions are 
derived. Those for the arithmetic mean distance (AMD) and 
one for the arithmetic mean square distance (AMSD) seem to 
be new.  
The paper lists the source code of a MATLAB® function to 
implement the formula on a computer, together with numer-
ical examples. Further, the code for solving a coil design 
problem with constraints as it arises in practical engineering 
is presented, and an example problem is solved.  

1. Introduction 

Inductors are basic components of many electric and elec-
tronic devices. Nowadays, electronic circuits are produced as 
planar structures like microelectronic integrated circuits 
(IC’s) and printed circuit boards (PCB’s). Thus, inductors are 
often realized as planar spiral coils. This is the case in radio 
frequency integrated circuits (RFIC’s) [1], in 13.56 MHz ra-
dio frequency identification (RFID) [2], near field communi-
cation (NFC) [3], and telemetry antennas [4], in wireless 
charging devices [5, 6], and as eddy current sensors for non-
destructive testing [7, 8]. In these applications, the coils must 
be designed to a specified inductance. Hence, values of the 
design parameters resulting in the required inductance must 
be found.  
This represents a simple form of an inverse problem. It can 
only be solved indirectly, by calculating the inductance of 
many coils, subject to any constraints, and by choosing the 
design whose inductance matches the predefined value best, 
e.g. using an optimization method. To do so, a method is 
needed to calculate the inductance of a coil from its design 
parameters. In principle, this can be done with the help of a 
field solver. In many cases, it suffices to know the low-fre-
quency or direct current (DC) inductance (see sections 6 and 
8). But even for designing a single inductor, creating the data 
file defining the layout is tedious, particularly if the coil has 
many windings, let alone if the calculation must be repeated 
for many different designs, as is the case in an inverse prob-
lem. Moreover, the computer run time may become very 
long. So, this way of solution is impractical.  
The Greenhouse method [9] offers an analytical alternative. 
It allows precise calculations of the DC inductance. The 
method consists of dividing the coil into its constituent 
straight conductor segments and calculating their partial self-
inductance and all mutual inductances between them sepa-
rately, using analytical formulae and summing up all the con-
tributions. But the method doesn’t provide an inductance for-
mula that explicitly depends on the design parameters, like 
the number of turns, the coil size, etc. Thus, for large num-
bers of turns and for solving inverse problems, the method 
becomes tedious.  
Therefore, many researchers have worked on finding approx-
imate inductance formulae that explicitly depend on the de-
sign parameters. Using such a formula is by far the easiest 
and fastest way to calculate coil inductance, particularly for 
solving inverse problems.  
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Some formulae approximating the DC inductance of planar 
spiral coils with rectangular conductor cross section are 
known from the literature, see ([8], equation (3)) and [10] 
where the maximum error of six of the most cited formulae 
are compared. Of these, only Crols et al.’s empirical formula 
[11] is applicable to any coil geometry, but the authors only 
discussed square and circular spiral coils. All other formulae 
are limited to square spiral coils. Whereas rectangular spiral 
coils were tested as eddy current sensors and a double-inte-
gral representation of the impedance of such coils was de-
rived [7], in IC design only square spiral inductors seem to 
be have been considered until today ([12], section I). It ap-
pears to me that there should also be a case for using rectan-
gular spiral coils in practical IC design, since they provide 
more flexibility for optimization under geometric con-
straints. This may even help to reduce cost. Jayaraman et al. 
argued along similar lines stating that “A rectangular spiral 

outline shape allows flexibility to the designer while doing 

layout floor planning at the circuit level. Thus, the design and 

modeling of rectangular spiral inductors are of great interest 

to the circuit designers.” ([12], section I).  
Further, in designing inductors for RFID devices, it is imper-
ative to be able to master rectangular spiral coils because the 
standard ISO 7810 prescribes the exact size of transponder 
cards, which is rectangular. To maximize the reading dis-
tance, their antennas must be made as large as possible. 
Hence, they must be rectangular. Consequently, also many 
RFID reader antennas are rectangular. This applies to many 
NFC devices as well, particularly to mobile phones, whose 
housing is rectangular.  
Shortly before this paper was submitted, Jayaraman et al.’s 
work, the first paper presenting a formula for rectangular spi-
ral coils based on physical principles came out [12]. They 
adapted Mohan’s current sheet approximation for the DC in-
ductance of square spiral coils [13] to rectangular ones and 
introduced some improvements. In the current sheet approx-
imation, the coil is modeled as four homogeneous conductive 
sheets forming the four sides of the rectangle. The gaps be-
tween parallel conductor segments (see Fig. 1 for a typical 
layout) are ignored. For square coils, the maximum error of 
this approximation was found to be 29 % ([10], subsection 
4.4). With the same method of error analysis and based on 
the same domain of definition, I have found the maximum 
error of Jayaraman et al.’s model ([12], equations (1) – (5)) 
to be 28 %.  
For specific application areas, it is possible to reduce the do-
main of definition. This lowers the maximum error. The error 
analysis described in section 5 comprises a systematic varia-
tion of all design parameters of rectangular coils and exactly 
known inductances of close to 194000 designs. This analy-
sis has revealed the following maximum errors of the model 
[12] for specific applications areas: 18 % for inductors in 
RFIC’s, 14 % for RFID and telemetry reader antennas and 
NFC antennas, and 11 %  for RFID and telemetry tran-
sponder antennas. These are all maximum errors. The indi-
vidual error in a specific case may be substantially smaller. 
But for the circuit designer, only the maximum error counts 
because this is the error he or she must expect when design-
ing a coil.  

This paper derives a more precise formula. Its maximum er-
ror over the whole domain of definition amounts to 5.6 %, 
compared to 28 % of the model [12], and it lowers the max-
imum errors for the specific application areas listed above 
down to 2.3 %, 2.6 %, and 1.5 %, respectively.  
Recently, an improved formula for square coils was pre-
sented [14]. It lowered the maximum error from hitherto 
29 % down to 2.0 %. Therefore, it is sensible to try to adapt 
it to the rectangular case. Unfortunately, the two-dimensional 
empirical correction factor in the formula ([14], equation 
(25)) only holds for coil aspect ratios close to unity. For 
larger ratios, the correction fails. E.g. for a ratio of 5.0, the 
error can rise up to 120 %. But a closer inspection has re-
vealed a systematic dependence of the error on four parame-
ters. Hence, one could, in principle, derive a new correction 
factor adapted to the rectangular case. But it would require a 
four-dimensional fit instead of a two-dimensional one. This 
was deemed to be too involved.  
Thus, an alternative solution was sought. It was found in the 
following approach: The conductor segments forming the 
spiral are connected in series, whereby the current remains 
constant along the spiral. So, as far as the mutual inductances 
between the parallel segments are concerned, the latter may 
as well be regarded as being connected in parallel. In a first 
step, this allows to model the spiral coil as a single-turn coil 
as in the current sheet approximation [12, 13], but with the 
essential difference that the four sides of the rectangle are not 
approximated as homogeneous conductors, but consist of 𝑁 
parallel conductor segments (𝑁 being the number of turns), 
so that the gaps between them are considered. Their mutual 
inductances are calculated similarly to the Greenhouse 
method [9], except that their individual lengths are approxi-
mated by their average length. This enables the inductance to 
be calculated with the help of the method of mean distances 
[15] by treating each side of the coil as one single conductor 
composed of 𝑁 parallel conductor segments. The mean dis-
tances between two arbitrary points anywhere within the total 
cross section of the coil are then needed. These mean dis-
tances are composed of elementary ones of two types, firstly, 
between a single rectangle and itself, and secondly, between 
two displaced congruent rectangles. The method of mean dis-
tances relies on three kinds of mean distance: the geometric 
mean distance (GMD), the arithmetic mean square distance 
(AMSD), and the arithmetic mean distance (AMD). Finally, 
the inductance of the single-turn coil is then multiplied by 𝑁2 
to get the total inductance, exactly as in the current sheet ap-
proximation.  
The resulting formula is purely based on physical principles 
and on approximations for the mean distances. The latter are 
found with the help of exact expressions that are derived in 
this paper. Unlike for the formula developed in [14] for 
square coils, no empirical correction factor for the inductance 
is needed. So, the formula is inherently scalable. Hence, it is 
valid for all coil dimensions and inductance ranges. For a 
proof see ([10], p. 39).  
Section 2 defines the design parameters of rectangular planar 
spiral inductors. Section 3 explains the method of error anal-
ysis employed in validating the approximations for the mean 
distances. The derivation of the inductance formula is given 
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in section 4. Section 5 presents the error analysis of the in-
ductance formula. A comparison with measurements is found 
in section 6. Section 7 discusses a MATLAB function for im-
plementing the formula on a computer, together with numer-
ical examples. Section 8 describes the automatic solution of 
an inverse problem with constraints to design a coil in an 
RFIC. An exemplary MATLAB code is given. Section 9 con-
cludes i.a. that this paper provides the first experimentally 
verifiable evidence of the usefulness of the full method of 
mean distances as it was introduced in [15]. In the appendices 
1 – 3, exact expressions for the GMD, AMSD, and AMD of 
rectangles are derived. Those for the AMD and one for the 
AMSD seem to be new. Appendix 4 lists the source code of 
the MATLAB function to evaluate the inductance formula.  

2. Design parameters of planar spiral coils 

Fig. 1 shows the layout of a rectangular planar spiral coil to-
gether with the definition of its dimensional design parame-
ters. These are:  

• 𝑁, number of turns or windings (𝑁 ≥ 2).  
• 𝐴, longer outermost mid-conductor side length.  
• 𝐵, shorter outermost mid-conductor side length.  
• 𝐴𝑖𝑛, longer innermost mid-conductor side length.  
• 𝐵𝑖𝑛 , shorter innermost mid-conductor side length.  
• 𝑤, winding distance or -pitch (𝑤 = 𝑠 + 𝑔).  
• 𝑔, gap or spacing between windings.  
• 𝑠, conductor width.  
• ℎ, conductor height or -thickness (hidden in Fig. 1).  

 
Figure 1: The layout of a rectangular planar spiral coil and its 

dimensional design parameters.  
 
There is also a set of dimensionless parameters (see next sec-
tion). Note that 𝑁, as a generic parameter, belongs to both 
sets. From Fig. 1, the following relations can be inferred:  
 

𝐴𝑖𝑛 = 𝐴 − 2(𝑁 − 1)𝑤, 𝐵𝑖𝑛 = 𝐵 − 2(𝑁 − 1)𝑤 .   (1) 

3. The method of error analysis 

The derivation of the inductance formula implies testing ap-
proximations for the mean distances to choose the best ones. 
Of course, one could simply compare some values of approx-
imated distances with exact values to assess the approxima-
tion. Exact expressions for all elementary mean distances are 
derived in appendices 1 – 3. But this would shed no light on 
the contribution of the approximation to the maximum error 
of the inductance formula. Depending on the design parame-
ters, the calculated inductance may be insensitive to the error 
of the mean distance. Or, quite to the contrary, the result may 
be very sensitive to it, magnifying any relative error of the 
mean distance, e.g. if the self- and the mutual inductance 
terms are of comparable magnitude. Their difference is the 
total inductance, see equation (30). So, what one needs is a 
way to systematically test the effect of any such approxima-
tion on the maximum error of the inductance formula. These 
tests must include all dimensions of the parameter space and 
cover its whole domain of definition.  
In a recent paper, a method of error analysis was developed 
for square coils, and exact inductance data for 13851 coil de-
signs were compiled [10]. Besides its use for finding the 
maximum error of various inductance formulae, this method 
offers the very possibility to perform the tests needed. There-
fore, this section provides an outline of the method.  
For the purpose of assessing the quality of approximations, 
we may limit the analysis to the case of square coils. This is 
justified because square coils always have the largest maxi-
mum error, as will be shown in section 5.  
Square planar spiral coils are characterized by five parame-
ters, e.g. 𝑁, 𝐴, 𝑤, 𝑠, and ℎ. Their number can be reduced to 
four by transforming them to dimensionless ones [10]. These 
are 𝑁, 𝜌, 𝜅, and 𝛾, in the order of importance in determining 
the inductance. The parameter 0 < 𝜌 < 1 is the filling factor. 
For a square coil, it is the ratio Ⱳ/𝑎 of the overall width Ⱳ 
spanned by one row of the 𝑁 windings,  
 

Ⱳ =
[𝐴 + 𝑠 − (𝐴𝑖𝑛 − 𝑠)]

2
= (𝑁 − 1)𝑤 + 𝑠,         (2) 

 
see Fig. 1 and equation (1), and the average conductor length  
 

𝑎 =
𝐴 + 𝐴𝑖𝑛

2
= 𝐴 − (𝑁 − 1)𝑤,                    (3) 

yielding  

𝜌 =
(𝑁 − 1)𝑤 + 𝑠

𝐴 − (𝑁 − 1)𝑤
 .                                      

 
Now we modify this definition for the later use for rectangu-
lar coils. Without restricting generality, we may assume  
 

𝐴 ≥ 𝐵,  
 
and we redefine 𝜌 in terms of the shorter rectangle side, sub-
stituting 𝐵 for 𝐴 and 𝐵𝑖𝑛 for 𝐴𝑖𝑛 in equation (2). This leaves 
the result for Ⱳ unchanged. Equation (3) is replaced by the 
equation for the shorter average conductor length  
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𝑏 =
𝐵 + 𝐵𝑖𝑛

2
= 𝐵 − (𝑁 − 1)𝑤,                    (4) 

 
leading to 𝜌 = Ⱳ/𝑏 or  
 

𝜌 =
(𝑁 − 1)𝑤 + 𝑠

𝐵 − (𝑁 − 1)𝑤
 .                                (5) 

 
A maximum value of 𝜌 is allowed for any given combination 
of parameter values ([10], equation (19)). This is to prevent 
invalid parameter combinations, like e.g. a too large conduc-
tor width for the given coil dimension and number of wind-
ings, for which the length of the innermost conductor seg-
ment would vanish or even become negative ([10], p. 40). 
With definition (5), we are on the safe side because it yields 
larger values of 𝜌 than the original definition. The remaining 
two dimensionless parameters besides 𝑁 and 𝜌 are the rela-
tive winding distance κ defined as  
 

𝜅 =
𝑤

𝑠
 > 1,                                            

 
and the cross-sectional aspect ratio 𝛾,  
 

𝛾 =
𝑠

ℎ
 ≥ 1.                                            

 
In PCB’s, one has 𝛾 ≫ 1. In RFIC’s, values down to 𝛾 = 2 
occur ([13], Table 4.10, ℎ = 0.9 µm). Permitting 𝛾 ≥ 1 also 
allows for square cross sections. The inverse transformation 
equations can be found in section 8.  
The designs were defined by 𝐴 = 𝐵 = 1 mm and all param-
eter combinations given by the Cartesian products of the sets 
of values of the dimensionless parameters 𝑁 , 𝜌 , 𝜅 , and 𝛾 
listed below. The parameter combinations are grouped in 
four ranges of 𝑁 containing 1, 5, 5, and 8 values of 𝑁, and 9 
values each of 𝜌 , 𝜅 , and 𝛾 , resulting in a total of 
(1 + 5 + 5 + 8) ∙ 93 = 729 + 3645 + 3645 + 5832 =
13851 parameter combinations or coil designs. The exact in-
ductances were calculated with the help of the free standard 
software FastHenry2 [16]. It can be downloaded from the site 
www.fastfieldsolvers.com. The calculations were done at 
DC, requesting 2 × 2 subfilaments. The conductivity of cop-
per at 20 ℃ was used, i.e. 𝜎 = 5.9595 ∙ 107 Ω−1m−1, corre-
sponding to the resistivity 1/𝜎 = 1.678 ∙ 10−8 Ωm  ([17], 
𝑇 = 293 K). The sets of parameter sampling values for the 
four ranges of 𝑁 were:  
 
Two-windings range: 𝑁 = 2,  
𝜌 = 0.01, 0.0537, 0.0975, 0.1412, 0.1850, 0.2288, 0.2725, 

0.3162, 0.36.  
 
Low range: 𝑁 = 3, 4, 5, 6, 7,  
𝜌 = 0.01, 0.0737, 0.1375, 0.2013, 0.2650, 0.3287, 0.3925,  

0.4563, 0.52.  
 
Medium range: 𝑁 = 8, 9, 10, 11, 12,  
𝜌 = 0.01, 0.1063, 0.2025, 0.2988, 0.3950, 0.4913, 0.5875,  

0.6838, 0.78.  

High range: 𝑁 = 13, 14, 15, 16, 17, 18, 19, 20,  
𝜌 = 0.01, 0.1162, 0.2225, 0.3287, 0.4350, 0.5413, 0.6475,  

0.7538, 0.86.  
 
All ranges of N:  
𝜅 = 1.1, 2.2125, 3.3250, 4.4375, 5.5500, 6.6625, 7.7750,  

8.8875, 10.  
𝛾 = 1, 2.4, 5.6, 13.3, 31.6 , 75, 177.8, 422, 1000.  
 
Note that the values of 𝜌 differ from range to range. The rea-
son is that, depending on 𝑁 and 𝜅, a maximum value of 𝜌 is 
allowed (see the comment following equation (5)). In the lists 
above, the most restrictive upper limit for 𝜌 that is valid for 
all 𝜅 and for all 𝑁 within each range is used [10].  
Now one can calculate the respective inductances with the 
formula in question, e.g. with the approximation for one of 
the mean distances, for the 13851 parameter combinations 
and compare the maximum relative error to the value ob-
tained with the exact expression. This is done in the next sec-
tion to select the best possible approximation for each of the 
mean distances.  

4. Derivation of the inductance formula 

In the spiral coil, the lengths of the parallel conductor seg-
ments forming the windings vary from 𝐴𝑖𝑛 − 𝑤  to 𝐴  and 
from 𝐵𝑖𝑛  to 𝐵, respectively, see Fig. 1. In this derivation, the 
coil is approximated as a single-turn coil with 𝑁 parallel con-
ductor segments in each of its four sides. To enable the use 
of the method of mean distances [15], all segments on the 
same side are approximated to have the same average length 
𝑎 or 𝑏 given by equations (3) and (4).  

4.1. Precise expression for the partial self-inductances 

According to the method of mean distances, the partial self-
inductances 𝐿𝑎 and 𝐿𝑏 of the sides of length 𝑎 and 𝑏, respec-
tively, can be summarized in the form ([15], equation (33)):  
 

𝐿𝔠 =
𝜇0𝔠

2𝜋
[log (√𝔠2 + 𝐴𝑀𝑆𝐷𝐿

2 + 𝔠) − log 𝐺𝑀𝐷𝐿

− √1 + (
𝐴𝑀𝑆𝐷𝐿

𝔠
)

2

+
𝐴𝑀𝐷𝐿

𝔠
] ,        (6) 

where 
𝔠 = 𝑎, 𝑏.                                               

 
Throughout this paper, log designates the natural logarithm. 
The constant 𝜇0 is the magnetic permeability of the vacuum, 
𝜇0 = 4𝜋 ∙ 10−7 Vs/(Am) . The quantities 𝐴𝑀𝑆𝐷𝐿 , 𝐺𝑀𝐷𝐿 , 
and 𝐴𝑀𝐷𝐿  are the compound mean distances belonging to 
the partial self-inductances of the sides of the single-turn coil. 
They are the respective mean distances between two arbitrary 
points anywhere within the cross section of 𝑁 parallel con-
ductor segments, i.e. anywhere within a row of 𝑁 congruent 
rectangles, see Fig. 2. So, these quantities represent com-
pound mean distances spanning over 𝑁 rectangles.  

http://www.fastfieldsolvers.com/
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Equation (6) is very precise provided that the ratio 𝑙/𝑠 ≥ 1, 
where 𝑙 is the length of the conductor. The percentage error 
of the method of mean distances is plotted for a single 
straight wire of circular cross section as a function of the ratio 
𝑙/𝑅  in ([15], Fig. 6), where 𝑅 is the wire radius. The smaller 
this ratio, the larger is the error. To translate between circular 
and square cross section, note that we have 𝐺𝑀𝐷𝑐𝑖𝑟𝑐 =
0.7788 ∙ 𝑅  ([15], equation (15)) on one hand and 
𝐺𝑀𝐷𝑠𝑞𝑢𝑎𝑟𝑒 = 0.4470 ∙ 𝑠, equation (17), on the other hand. 
Hence, for a square cross section, the equivalent width 
amounts to 𝑠 = 1.7423 ∙ 𝑅. Then the square and the circular 
cross section both have the same GMD.  

 
 
Figure 2: The cross section of 𝑁 = 3 parallel conductor seg-

ments from Fig. 1.  
 
The equivalent worst-case ratio 𝑙/𝑅 in a spiral coil is found 
in its shortest conductor segment. This is the innermost one. 
Its length is 𝑙 = 𝐴𝑖𝑛 − 𝑤, see Fig. 1. Hence, the equivalent 
ratio 𝑙/𝑅 of a conductor of square cross section correspond-
ing to a round wire of the same length is 1.7423 ∙
(𝐴𝑖𝑛 − 𝑤)/𝑠. For the coil designs defined in section 3, its 
minimum value is 3.85 (attained for 𝑁 = 13, 𝜌 = 0.86, and 
𝜅 = 1.1). According to ([15], Fig. 6), for 𝑙/𝑅 = 3.85, the er-
ror of the partial self-inductance obtained by the method of 
mean distances for circular cross section lies below 0.007 % 
if the exact values for the GMD, AMSD, and AMD are used. 
For square cross section, this is only an approximation. But 
it demonstrates that the use of the method of mean distances 
for planar spiral coils is well justified.  
To apply it to calculate the partial self-inductances 𝐿𝔠 accord-
ing to equation (6), we need the compound mean distances 
𝐺𝑀𝐷𝐿 , 𝐴𝑀𝑆𝐷𝐿 , and 𝐴𝑀𝐷𝐿 between the total cross-sectional 
area 𝐴𝑡 and itself (drawn black in Fig. 2).  
 
We start by calculating log 𝐺𝑀𝐷𝐿 . It is given by the double 
area integral ([18], equation (6.32), p. 273)  
 

log 𝐺𝑀𝐷𝐿 =
1

|𝐴𝑡|2
∬ log(𝛿)

𝐴𝑡𝐴𝑡′

𝑑𝐴𝑡
′ 𝑑𝐴𝑡  ,                

 
where 𝛿 is the distance between any two points within the 
total surface 𝐴𝑡

′ = 𝐴𝑡  of total area |𝐴𝑡| . Now, 𝐴𝑡  is com-
posed of 𝑁  disjunct and congruent rectangles 𝐴𝑖  of area 
|𝐴𝑖| = 𝐴 = 𝑠ℎ, see Fig. 2. Hence, |𝐴𝑡| = 𝑁𝐴. By virtue of 
the linearity of the integral, the double area integral over 𝐴𝑡 
and 𝐴𝑡′ can be expressed as the double sum of 𝑁2  double 
area integrals over the rectangles 𝐴𝑖 and 𝐴𝑗. Thus,  
 

log 𝐺𝑀𝐷𝐿 =
1

𝑁2
∑ ∑

1

𝐴2
∬ log(𝛿𝑖,𝑗)

𝐴𝑖 𝐴𝑗

𝑑𝐴𝑗𝑑𝐴𝑖

𝑁

𝑗=1

𝑁

𝑖=1

,     (7) 

 
where 𝛿𝑖,𝑗 is the distance between one integration point lo-
cated in rectangle 𝐴𝑖 and the other one in rectangle 𝐴𝑗.  
Two cases can be distinguished: The two integration points 
either lie in the same rectangle (case 1) or in different ones 
(case 2). Hence, the double sum (7) can be split into two parts 
representing the two cases, log 𝐺𝑀𝐷𝐿,1 and log 𝐺𝑀𝐷𝐿,2:  
 

log 𝐺𝑀𝐷𝐿 = log 𝐺𝑀𝐷𝐿,1 + log 𝐺𝑀𝐷𝐿,2.            (8) 
 
In case 1, only the summands with 𝑖 = 𝑗 are extracted from 
the double sum (7) to form log 𝐺𝑀𝐷𝐿,1. It reduces to the sum 
of 𝑁  identical contributions, which, by definition, are all 
given by the logarithm of the elementary GMD between a 
single rectangle and itself, denoted by log 𝐺𝑀𝐷1, normalized 
by 1/𝑁2. Hence,  
 

log 𝐺𝑀𝐷𝐿,1 =
1

𝑁2
𝑁 log 𝐺𝑀𝐷1 .                    (9) 

 
The exact expression for log 𝐺𝑀𝐷1 is presented in appendix 
1, equation (39).  
In case 2, only the summands with 𝑖 ≠ 𝑗 are extracted from 
the double sum (7) to form log 𝐺𝑀𝐷𝐿,2. It represents the sum 
of the remaining 𝑁(𝑁 − 1) contributions, which, by defini-
tion, are given by the logarithm of the elementary GMD be-
tween two rectangles displaced by a multiple 𝑘 of the wind-
ing distance 𝑤, denoted by log 𝐺𝑀𝐷2 (𝑘𝑤), normalized by 
1/𝑁2. By contrast with case 1, here the contributions are not 
all equal, but they depend on the multiplier 𝑘. Hence, the sec-
ond part of the double sum (7) must be transformed to a sin-
gle sum with 𝑘 as the summation index.  
In Fig. 2 there are three pairs of rectangles: Two pairs, (1,2) 
and (2,3) , each have the displacement 𝑤 , and one pair, 
(1,3), has the displacement 2𝑤. So, 𝑘 = 1 … 2. For 𝑁 wind-
ings this becomes 𝑘 = 1 … 𝑁 − 1 because there are 𝑁 − 1 
gaps between 𝑁 rectangles. Thus, the largest displacement of 
two rectangles is (𝑁 − 1)𝑤. For each value of 𝑘, there are 
𝑁 − 𝑘 pairs of rectangles of mutual displacement 𝑘𝑤. Each 
of these pairs must be counted twice, because in the double 
sum (7), all pairs with 𝑖 ≠ 𝑗 occur twice: once as (𝑖, 𝑗), and 
once as (𝑗, 𝑖) , and both notations refer to the same pair. 
Hence, the second part of the double sum (7) transforms to  
 

log 𝐺𝑀𝐷𝐿,2 =
2

𝑁2
∑(𝑁 − 𝑘) log 𝐺𝑀𝐷2

𝑁−1

𝑘=1

(𝑘𝑤) .      (10) 

 
The exact expression for log 𝐺𝑀𝐷2, the logarithm of the ele-
mentary GMD between two displaced rectangles, is given in 
appendix 1, equation (38). The total number of contributions 
in case 2 is  
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2 ∑(𝑁 − 𝑘)

𝑁−1

𝑘=1

= 2(𝑁 − 1)𝑁 − 2 ∑ 𝑘 = 𝑁(𝑁 − 1)

𝑁−1

𝑘=1

  (11) 

 
as anticipated above, confirming the correctness of the trans-
formation leading to the single sum (10). With the help of 
equations (9) and (10), the sum (8) becomes  
 

log 𝐺𝑀𝐷𝐿 =
1

𝑁2
[𝑁 log 𝐺𝑀𝐷1

+ 2 ∑(𝑁 − 𝑘) log 𝐺𝑀𝐷2

𝑁−1

𝑘=1

(𝑘𝑤)].     (12) 

 
Next, the quantity 𝐴𝑀𝑆𝐷𝐿

2 in equation (6), i.e. the square of 
the compound AMSD belonging to the partial self-induct-
ances of the sides of the coil, is defined analogously to equa-
tion (7) as  

𝐴𝑀𝑆𝐷𝐿
2 =

1

𝑁2
∑ ∑

1

𝐴2
∬ 𝛿𝑖,𝑗

2

𝐴𝑖 𝐴𝑗

𝑑𝐴𝑗𝑑𝐴𝑖

𝑁

𝑗=1

𝑁

𝑖=1

.          (13) 

 
Analogously to equation (12), by the definition of 𝐴𝑀𝑆𝐷1

2, 
the square of the elementary AMSD between a single rectan-
gle and itself, and 𝐴𝑀𝑆𝐷2

2 , the square of the elementary 
AMSD between two displaced rectangles, one obtains  
 

𝐴𝑀𝑆𝐷𝐿
2 =

1

𝑁2
[𝑁 ∙ 𝐴𝑀𝑆𝐷1

2

+ 2 ∑(𝑁 − 𝑘)𝐴𝑀𝑆𝐷2
2

𝑁−1

𝑘=1

(𝑘𝑤)].       (14) 

 
The exact expressions for 𝐴𝑀𝑆𝐷1

2  and 𝐴𝑀𝑆𝐷2
2  are pre-

sented in appendix 2, equations (43) and (42), respectively.  
 
Finally, the quantity 𝐴𝑀𝐷𝐿  in equation (6), i.e. the com-
pound AMD belonging to the partial self-inductances of the 
sides of the coil, is defined analogously to equation (13) as  
 

𝐴𝑀𝐷𝐿 =
1

𝑁2
∑ ∑

1

𝐴2
∬ 𝛿𝑖,𝑗

𝐴𝑖 𝐴𝑗

𝑑𝐴𝑗𝑑𝐴𝑖

𝑁

𝑗=1

𝑁

𝑖=1

.           (15) 

 
Analogously to equation (14), by the definition of 𝐴𝑀𝐷1, the 
elementary AMD between a single rectangle and itself, and 
𝐴𝑀𝐷2, the elementary AMD between two displaced rectan-
gles, one obtains  
 

𝐴𝑀𝐷𝐿 =
1

𝑁2
[𝑁 ∙ 𝐴𝑀𝐷1 + 2 ∑(𝑁 − 𝑘)𝐴𝑀𝐷2

𝑁−1

𝑘=1

(𝑘𝑤)] . (16) 

 
The exact expressions for 𝐴𝑀𝐷1  and 𝐴𝑀𝐷2  are derived in 
appendix 3, equations (48) and (46), respectively.  

Now the exact expressions for all quantities appearing in 
equation (6) are known, and the partial self-inductances 𝐿𝑎 
and 𝐿𝑏 can be evaluated.  

4.2. Approximate expression for the partial self-inductances 

The equations derived in subsection 4.1 for the compound 
mean distances spanning over several rectangles and the ex-
pressions for the elementary mean distances derived in the 
appendices are exact. Only equation (6) is not exact, although 
it is very precise, see subsection 4.1. The resulting formulae 
get very complicated. But since the concept of average-sized 
single-turn coil is only a rather coarse approximation for the 
spiral coil, it is not worth evaluating them exactly. Instead, 
good approximations would be useful.  
The method of error analysis from section 3 allows to assess 
the effect of approximations on the maximum error of the in-
ductance formula over the whole domain of definition of the 
design parameters of square coils. In this and the next sub-
section, the method is used to validate approximations for the 
equations appearing in subsection 4.1.  
The first equation that might be simplified is equation (6), 
since the mean distances AMSD and AMD are often ne-
glected altogether, see e.g. in ([14], equation (2)). This is vi-
able when the mean distances only stretch across a single 
conductor, i.e. a single rectangle in Fig. 2. But here they span 
over all 𝑁 rectangles. An error analysis according to section 
3 revealed that neglecting the mean distances 𝐴𝑀𝑆𝐷𝐿  and 
𝐴𝑀𝐷𝐿 in equation (6) in the final version of the inductance 
formula as defined in subsection 4.4 raised the maximum er-
ror to 30 % (𝑁 = 13, 𝜌 = 0.86, 𝜅 = 2.2125, and 𝛾 = 1.0). 
Thus, the AMSD and AMD cannot be neglected.  
Another simplification of equation (6) often found in the lit-
erature is substituting both the AMSD and the AMD by the 
GMD, so that only the latter needs to be calculated. An anal-
ogous error analysis disclosed a maximum error of 14 % (as 
above, but 𝜅 = 10.0). So, this simplification is not an option 
either. Hence, equation (6) cannot be simplified.  
 
Seeking approximations for the mean distances was more 
successful. Rosa ([19], p. 314) and Grover ([20], p. 22) 
showed that the GMD between a single rectangle (of width 𝑠 
and height ℎ) and itself, whose exact expression is given in 
equation (39), can be approximated as  
 

𝐺𝑀𝐷1 ≈ 0.2235(𝑠 + ℎ)                          (17) 
or  

log 𝐺𝑀𝐷1 ≈ log(𝑠 + ℎ) − 3/2 .                 (18) 
 
For the coil designs in section 3, an error analysis showed 
that, if in the final version of the inductance formula as de-
fined in subsection 4.4, equation (18) was substituted by the 
exact expression (39) in equation (12), the maximum error 
changed by not more than 0.05 %. Therefore, approximation 
(18) is validated.  
The exact expression (38) for the GMD between two dis-
placed congruent rectangles is even more complicated than 
equation (39), so an approximation is even more desirable. 
The only approximation found in the literature was the one 
derived by Rosa ([21], equation (13)) as the series expansion 
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of the exact solution for the GMD between two axially dis-
placed line segments of equal length 𝑠. This is the special 
case of two congruent rectangles of vanishing height ℎ = 0, 
and for the displacement 𝑤 = 𝑛𝑠, 𝑛 ∈ ℕ:  
 

log 𝐺𝑀𝐷2 ≈ log 𝑛𝑠 − (
1

12𝑛2
+

1

60𝑛4
+

1

168𝑛6
+ ⋯ ) , 

 
which corresponds to 𝜅 = 𝑤/𝑠 = 𝑛 ∈ ℕ. It converges very 
fast except for 𝑛 = 1. It can also be found in ([20], p. 20). 
Rosa’s derivation [21] remains valid for 𝜅 ∈ ℝ, so Mohan 
wrote it in the generalized form ([13], equation (3.13))  
 

log 𝐺𝑀𝐷2 ≈ log 𝑤 − (
1

12𝜅2
+

1

60𝜅4
+

1

168𝜅6
+ ⋯ ) . 

 
This formula was adopted with the same number of terms by 
Jayaraman et al. in their recent paper ([12], equation (3)).  
By contrast, equation (20) will consider the finite height ℎ of 
the rectangles, thus extending the applicability of the induct-
ance formula to coils with low 𝛾 = 𝑠/ℎ down to 𝛾 = 1. Not 
surprisingly, an error analysis according to section 3 showed 
that, if in the final version of the inductance formula as de-
fined in subsection 4.4, equation (20) was replaced by the 
GMD between two displaced line segments, the maximum 
errors in the four ranges of 𝑁 worsened from  
4.3 %, 3.1 %, 3.7 %, and 5.6 %  
to 
6.0 %, 5.1 %, 3.6 %, and 5.4 %.  
Because of this large increase of up to 2.0 %, equation (20) 
was preferred.  
To derive equation (20), one can guess that log 𝐺𝑀𝐷2 should 
also depend on log(𝑠 + ℎ), as log 𝐺𝑀𝐷1 does, since for zero 
displacement 𝑤 = 0 , the rectangles coincide:  𝐺𝑀𝐷2 =
𝐺𝑀𝐷1 . Further, 𝐺𝑀𝐷2  must depend on 𝑤. Intuitively, one 
may expect it to depend on the relative displacement 𝜅 =
𝑤/𝑠. Indeed, some trial calculations revealed that for square 
cross section, ℎ = 𝑠, log 𝐺𝑀𝐷2 was very well approximated 
by  

log 𝐺𝑀𝐷2 ≈ log(𝑠 + ℎ) + log (
𝜅

2
) .               (19) 

 
So, despite the intuition that leads to equation (19), it is not 
even defined for 𝑤 = 0. Interestingly, for ℎ = 𝑠, this is iden-
tical to log 𝑤, the first term of the series expansion for the 
GMD between two displaced line segments (which is based 
on ℎ = 0). In the general case of rectangular cross section, 
log 𝐺𝑀𝐷2 must also depend on the cross-sectional aspect ra-
tio 𝛾 = 𝑠/ℎ. Although approximation (19) does depend on ℎ, 
it is only valid for square cross section, 𝛾 = 1. It had to be 
extended to cover the case 𝛾 > 1. Plotting the exact solution 
of log𝐺𝑀𝐷2(𝜅) according to equation (38) for various val-
ues of 𝛾 , together with the approximation (19), both as a 
function of 𝜅, always resulted in a nearly constant difference 
between the two plots. This meant that the required correc-
tion mainly depended only on 𝛾, but not on 𝜅. Hence, it suf-
ficed to add a function of 𝛾 to equation (19) fitting this dif-
ference to arrive at the general approximation. Least-squares 
fits of various types of elementary functions revealed a 

rational function as the best fit for values of 𝛾 in the interval 
[1.0, 1000]. The resulting approximation for log 𝐺𝑀𝐷2 was  
 

log 𝐺𝑀𝐷2 ≈ log(𝑠 + ℎ) + log (
𝜅

2
) −

−1.46𝛾 + 1.45

2.14𝛾 + 1
.  (20) 

 
For 𝛾 ≈ 1, the correction in 𝛾 vanishes, as expected. An er-
ror analysis according to section 3 showed that, if in the final 
version of the inductance formula as defined in subsection 
4.4, equation (20) was substituted by the exact expression 
(38) in equation (12), the maximum errors in the four ranges 
of 𝑁 changed by 0.11 % maximum. Hence, approximation 
(20) is well-founded.  
 
Next, the exact expression (43) for 𝐴𝑀𝑆𝐷1

2 in equation (14) 
is so simple that it doesn’t need an approximation:  
 

𝐴𝑀𝑆𝐷1
2 =

1

6
(𝑠2 + ℎ2).  

 
In the exact expression (42) for 𝐴𝑀𝑆𝐷2

2, the square terms 
beside 𝑤2 can even be neglected, so it simplifies to  
 

𝐴𝑀𝑆𝐷2
2 ≈ 𝑤2,                               (21) 

 
affecting the maximum error of the inductance formula by 
less than 0.009 %.  
 
Finally, the exact expression (48) for 𝐴𝑀𝐷1 in equation (16) 
is as complicated as equation (39) for log 𝐺𝑀𝐷1, so an ap-
proximation would be helpful. In his dissertation, Mohan 
suggested the formula ([13], equation (3.21))  
 

𝐴𝑀𝐷1 ≈
√𝑠2 + ℎ2 + 0.46𝑠ℎ

3
 , 

 
indicating a precision of 2 %, but without disclosing how he 
had found the formula and against what reference he had cal-
culated the error. I found a maximum error of 1.4 % com-
pared to the exact expression (48) for a ratio 𝑠 to ℎ (or vice 
versa) close to 5.12. Note that the formula above is symmet-
rical on exchanging 𝑠 and ℎ, as it must be. Hence, its error 
only depends on the ratio of 𝑠 and ℎ.  
In the literature, the AMD is often approximated by the 
GMD. In our case this means  
 

𝐴𝑀𝐷1 ≈ 𝐺𝑀𝐷1,                               (22) 
 
where 𝐺𝑀𝐷1  is given in equation (17). An error analysis 
based on section 3 revealed that, if in the final version of the 
inductance formula as defined in subsection 4.4, the exact 
expression (48) was substituted for equations (22) and (17) 
in equation (16), the maximum error changed by 0. 15 % 
maximum. Therefore, approximation (22) is justified. If Mo-
han’s formula was used instead of equation (22), the maxi-
mum error in the lower ranges of 𝑁 increased by 0.15 %, so 
equation (22) was preferred.  
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The exact expression (46) for 𝐴𝑀𝐷2 is very complicated. An 
approximation was needed. Here as well, the approximation  
 

𝐴𝑀𝐷2 ≈ 𝐺𝑀𝐷2                              (23) 
 
can be made. 𝐺𝑀𝐷2, in turn, can be approximated by taking 
the exponential function of expression (20). Substituting the 
exact expression (46) for equation (23) and the exponential 
function of expression (20) in equation (16) changed the 
maximum error of the calculated inductance by less than 
0. 09 %. So, approximation (23) is viable.  
Note that applying equations (22) and (23) is not the same as 
setting 𝐴𝑀𝐷𝐿 ≈  𝐺𝑀𝐷𝐿 . This would result in a maximum er-
ror of 16 % (𝑁 = 13, 𝜌 = 0.86, 𝜅 = 10.0, and 𝛾 = 1.0).  

4.3. Approximate expression for the mutual inductances 

The mutual inductance 𝑀𝑎 between the two rows of parallel 
conductors of average length 𝑎 at average mutual distance 𝑏, 
and the mutual inductance 𝑀𝑏 between the other two rows of 
parallel conductors of average length 𝑏  at average mutual 
distance 𝑎, are given by an equation analogous to (6),  
 

𝑀𝔠 =
𝜇0𝔠

2𝜋
[log (√𝔠2 + 𝐴𝑀𝑆𝐷𝔠

2 + 𝔠) − log 𝐺𝑀𝐷𝔠

− √1 + (
𝐴𝑀𝑆𝐷𝔠

𝔠
)

2

+
𝐴𝑀𝐷𝔠

𝔠
] ,           (24) 

where 
𝔠 = 𝑎, 𝑏 ,                                                  
𝔠 = 𝑏, 𝑎.                                                   

 
If 𝔠 = 𝑎, then 𝔠 = 𝑏, and vice versa.  
 
We start by calculating log 𝐺𝑀𝐷𝔠̅, the logarithm of the com-
pound GMD between two rows of rectangles that are in-line. 
The cross-sectional view of the spiral coil with the two rows 
of rectangles is exemplified in Fig. 3.  

 
 
Figure 3: The total cross section of the coil from Fig. 1.  
 
In calculating log 𝐺𝑀𝐷𝔠̅, the two integration points always lie 
in two different rectangles. One of the points lies in a rectan-
gle in the left row (i.e. in one of the rectangles 1, 2, or 3 in 
Fig. 3), and the other one in a rectangle in the right row (i.e. 
in one of the rectangles 4, 5, or 6). So, analogously to equa-
tion (7), we have a double sum of 𝑁2 double area integrals,  
 

log 𝐺𝑀𝐷𝔠̅ =
1

𝑁2
∑ ∑

1

𝐴2
∬ log(𝛿𝑖,𝑗)

𝐴𝑖 𝐴𝑗

𝑑𝐴𝑗𝑑𝐴𝑖

2𝑁

𝑗=𝑁+1

𝑁

𝑖=1

. (25) 

In the double sum (25), only contributions of case 2 arise, 
namely, by definition, log𝐺𝑀𝐷2(𝔠 + 𝑘𝑤) , normalized by 
1/𝑁2, where 𝑘 = −(𝑁 − 1) … (𝑁 − 1), as can be inferred 
from Fig. 3. Since they depend on the multiplier 𝑘, we need 
an analogous transformation to a single sum with 𝑘 as the 
summation index as in subsection 4.1. For each value of 𝑘, 
there are 𝑁 − |𝑘| pairs of rectangles of mutual displacement 
𝔠 + 𝑘𝑤. In the double sum (25), none of the pairs of rectan-
gles occurs twice, so there is no factor 2 in the resulting sin-
gle sum. Hence, the double sum (25) transforms to  
 
       log 𝐺𝑀𝐷𝔠̅ = 

1

𝑁2
[ ∑ (𝑁 − |𝑘|) log𝐺𝑀𝐷2(𝔠 + 𝑘𝑤)

𝑁−1

𝑘=−(𝑁−1)

].   (26) 

 
The total number of pairs of rectangles is  
 

∑ (𝑁 − |𝑘|)

𝑁−1

𝑘=−(𝑁−1)

= 2 ∑(𝑁 − 𝑘) + 𝑁 .

𝑁−1

𝑘=1

 

 
With the help of equation (11), this is found to be 𝑁2, con-
sistent with the number of 𝑁2 summands in equation (25), 
thus confirming the correctness of the transformation leading 
to the single sum (26).  
The quantity log 𝐺𝑀𝐷2 could, in principle, be evaluated with 
the help of the exact expression (38). But for such large dis-
placements compared to 𝑠 and for 𝛾 > 1, expression (38) be-
came numerically unstable. It then contained differences of 
numbers that were nearly equal, so that double precision 
arithmetic was not precise enough to represent them. This led 
to large errors beyond bound. So, equation (38) cannot be 
used to calculate log 𝐺𝑀𝐷𝔠̅.  
A remedy might be to reformulate equation (38) in terms of 
ratios ℎ/𝑤, ℎ/(𝑤 + 𝑠), etc., and to derive a Taylor series ex-
pansion for small values of these ratios where, hopefully, the 
terms causing the instability would cancel analytically. Both 
types of functions occurring in equation (38), namely, 
log(1 + 𝑥2) and arctan(𝑥), have alternating Taylor series, 
allowing the estimation and thus the control of the truncation 
error.  
But it turned out that this tedious procedure is probably not 
worth the effort. It was possible to bypass the instability 
problem of equation (38) and to do the error analysis by re-
stricting it to the subdomain characterized by 𝛾 = 1. It re-
vealed that the maximum error of the inductance formula 
over all four ranges of 𝑁 defined in section 3 changed by less 
than 0.0002 % if the approximation given in equation (27) 
was replaced by the exact expression (38). Due to this mar-
ginally small effect of approximation (27) for 𝛾 = 1, it may 
be expected to remain negligible for all 𝛾 > 1, even if it 
should increase by up to three orders of magnitude.  
Two alternatives for approximating equation (38) were at 
hand: equation (20) with 𝜅 = (𝔠 + 𝑘𝑤)/𝑠 and the central fil-
aments approximation. In the latter, the GMD of the two con-
ductor segments is simply replaced by their central distance 
𝔠 + 𝑘𝑤 . One important result of the error analysis to be 
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discussed in section 5 is that the maximum error strictly de-
creases as a function of the coil aspect ratio  
 

𝛤 =
𝐴

𝐵
≥ 1 .                                            

 
Now, error calculations showed that equation (20) would 
confine this desirable property to within a narrower interval 
of 𝛤 than the central filaments approximation, i.e. it would 
undesirably restrict the scope of applicability of error inter-
polation. Hence, in the calculation of the mutual inductances, 
the central filaments approximation was preferred, even 
though in the low range of 𝑁 and at 𝛤 = 1, the maximum er-
ror increased by 0.4 %  compared to using equation (20). 
Therefore, equation (26) becomes  
 

log 𝐺𝑀𝐷𝔠̅ =
1

𝑁2
[ ∑ (𝑁 − |𝑘|) log(𝔠 + 𝑘𝑤)

𝑁−1

𝑘=−(𝑁−1)

],   (27) 

 
with 𝔠̅ = 𝑏, 𝑎, see equation (24).  
 
Next, in the analogous calculation of 𝐴𝑀𝑆𝐷𝔠̅

2  in equation 
(24), no instability problem arose, so the exact equation (42) 
for 𝐴𝑀𝑆𝐷2

2 could be used, substituting 𝔠 + 𝑘𝑤 for 𝑤. Since 
𝔠 ≫ 𝑤, approximation (21) is even more justified in equation 
(24) than it was in equation (6). Thus, analogously to equa-
tion (27), one finds  
 

𝐴𝑀𝑆𝐷𝔠̅
2 =

1

𝑁2
[ ∑ (𝑁 − |𝑘|)

𝑁−1

𝑘=−(𝑁−1)

(𝔠 + 𝑘𝑤)2].   (28) 

 
Finally, in the calculation of 𝐴𝑀𝐷𝔠̅, the same problem as for 
log 𝐺𝑀𝐷𝔠̅ arose: The exact equation (46) for 𝐴𝑀𝐷2 became 
numerically unstable. The problem was circumvented in the 
same manner, by applying the central filaments approxima-
tion, i.e. the exact AMD was simply replaced by the displace-
ment 𝔠 + 𝑘𝑤 as the only alternative available. Analogously 
to equation (28), this becomes  
 

𝐴𝑀𝐷𝔠̅ =
1

𝑁2
[ ∑ (𝑁 − |𝑘|)(𝔠 + 𝑘𝑤)

𝑁−1

𝑘=−(𝑁−1)

].       (29) 

 
Here, an error analysis restricted to 𝛾 = 1 led to the same 
conclusion as for equation (38): It is probably not worth ex-
panding equation (46) in a Taylor series. In the highest range 
of 𝑁 , it remained numerically unstable, even for 𝛾 = 1.  

4.4. The inductance formula  

Finally, the inductance of the single-turn coil must be multi-
plied by 𝑁2 to consider the effect of the windings, just as in 
the current sheet approximation [12, 13]. The total induct-
ance 𝐿 of the spiral coil then reads  
 

𝐿 = 2𝑁2[𝐿𝑎 + 𝐿𝑏 − (𝑀𝑎 + 𝑀𝑏)] ,               (30) 
 

where 𝐿𝑎 and 𝐿𝑏 are given in equation (6), which, in turn, re-
fers to equations (3), (4), (12), (14), (16) – (18), (20) – (23), 
and (43), and 𝑀𝑎 and 𝑀𝑏 are defined in equation (24), which, 
in turn, refers to equations (3), (4) and (27) – (29). The factor 
2 results from the fact that there are two sides of the rectangle 
with conductors of length 𝑎 and two of length 𝑏, each having 
the partial self-inductance 𝐿𝑎 and 𝐿𝑏, respectively, and that 
the mutual inductances 𝑀𝑎 and 𝑀𝑏 must be counted twice to 
consider the coupling from the conductors on one side of the 
rectangle to those on the opposite side, and vice versa.  
One might argue here that the exponent of 𝑁 in equation (30) 
should be < 2.0 since the size of the loops differs from turn 
to turn, leading to coupling losses resulting in a lower induct-
ance. But this effect is already considered in the mean dis-
tances used in equations (6) and (24). Indeed, an error analy-
sis according to section 3 confirmed that 2.0 is the optimum 
value.  

5. Error analysis for rectangular coils 

In the present work, to ensure comparability with the results 
from [10] and [14], the error analysis was done in the same 
way as described in [10] by varying all four dimensionless 
parameters 𝑁, 𝜌, 𝜅, and 𝛾 and by using the same sampling 
values for the parameters. But the formulae derived in section 
4 extend the scope of applicability to rectangular coils. So, a 
fifth dimensionless parameter had to be added, namely, the 
coil aspect ratio 𝛤 = 𝐴/𝐵 ≥ 1. The assumption 𝛤 ≥ 1 does 
not restrict generality, but it is necessary for the unambiguous 
and safe definition of 𝜌, see the comment following equation 
(5). For all ranges of 𝑁, the following 14 sampling values of 
𝛤 were used:  
 
𝛤 = 1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 

 3.75, 4.  
 
The coil designs were defined by 𝐵 = 1 mm and, for each of 
the four ranges of 𝑁, by all parameter combinations given by 
the Cartesian product of the respective sets of sampling val-
ues of the four dimensionless parameters 𝑁, 𝜌, 𝜅, and 𝛾 pre-
sented in section 3, and the set of 14 sampling values of 𝛤 
listed above. Hence, the number of reference coil designs in-
creased from 13851 in section 3 to 14 ∙ 13851 = 193914.  
A python script was used to automatically call the software 
FastHenry2 repeatedly for calculating the exact inductances 
of the reference coils. On a PC with a Xeon W-2125 proces-
sor (4 cores, 4 GHz) and 64 GByte random-access memory, 
the runtimes summed up to 22.8 hours. The MATLAB func-
tion listed in appendix 4 completed the calculations within 
10.8 seconds.  
The maximum errors over 𝑁, 𝜌, 𝜅, and 𝛾 were calculated as 
a function of 𝛤 up to 𝛤 = 10.0. They were found to strictly 
decrease with increasing 𝛤 in all four ranges of 𝑁, but only 
up to a certain limit. Beyond this limit, the error increased, 
and eventually its behavior even became chaotic. The said 
limit occurred earliest in the high range of 𝑁, at 𝛤 = 2.5, and 
latest in the two-windings range, at 𝛤 = 4.0. The results are 
listed in Table 1 as a function of 𝛤 up to 𝛤 = 4.0. Values be-
yond the limit of strict decrease are printed in red. The results 



10 
 

are also plotted in Figs. 4 – 7 as a function of 𝛤 up to the limit 
of strict decrease. Note that every value in Table 1 and every 
point in Figs. 4 – 7 represents the maximum error of 729, 
3645, 3645, and 5832 coil designs, respectively, depending 
on the range of 𝑁, over the domain of definition of 𝜌, 𝜅, and 
𝛾 as defined in section 3, computed at the respective value of 
𝛤.  
The property of strictly decreasing maximum error as a func-
tion of 𝛤 was considered highly desirable. It allows to safely 
estimate the maximum error to be expected for any coil de-
sign by linear interpolation for any value of 𝛤 below the limit 
of strict decrease. Consequently, the largest errors occur for 
square coils, i.e. at 𝛤 = 1. This fact has already been ex-
ploited in section 4, as explained in section 3, and it will again 
be evoked in section 6.  
For 𝛤 > 1, the maximum errors decrease rapidly. The higher 
the range of 𝑁, the faster the maximum error decreases. The 
values of 𝛤 at which it has halved are roughly 2.5, 2.25, 1.5, 
and 1.2, respectively, for the four ranges in increasing order 
of 𝑁.  
The formula can be used up to 𝛤 = 4.0 for all ranges of 𝑁, 
but interpolation of the maximum error is restricted to below 
the upper limit of strict decrease, i.e. to within the region with 
black numbers in Table 1. The region with red numbers dis-
plays chaotic behavior in the mid and high range of 𝑁.  
The overall maximum error of 5.55 % is considerably larger 
than the value to be expected from the approximations used 
for the mean distances in section 4, where the largest contri-
bution to the maximum error amounted to 0.4 %  (see the 
comment preceding equation (27)). In addition, from the re-
sults obtained by the error analyses in section 4, it is evident 
that the contributions from the method of mean distances and 
from the central filaments approximation are marginal. All 
this suggests that the main contribution to the error of the in-
ductance formula does not stem from these approximations, 
but rather from the concept of average-sized single-turn coil 
on which it is based, which approximates the varying lengths 
of the conductor segments by their averages 𝑎 and 𝑏.  
 
Table 1: The maximum relative errors of the inductance for-

mula (30) for the four ranges of 𝑁 defined in section 
3, as a function of the coil aspect ratio 𝛤. Values be-
yond the limit of strict decrease are printed in red.  

𝛤 Two-wind. 
[%] 

Low 
[%] 

Mid 
[%] 

High 
[%] 

1.00 4.32 3.08 3.74 5.55 
1.10 4.15 2.70 2.35 3.56 
1.25 3.83 2.27 1.95 2.18 
1.50 3.32 2.02 1.83 1.90 
1.75 2.92 1.74 1.68 1.76 
2.00 2.63 1.64 1.54 1.60 
2.25 2.35 1.50 1.45 1.51 
2.50 2.16 1.35 1.31 1.38 
2.75 1.98 1.22 1.21 1.46 
3.00 1.83 1.13 1.15 1.41 
3.25 1.69 1.05 1.08 1.16 
3.50 1.57 0.98 1.61 1.44 
3.75 1.50 1.03 1.06 1.06 
4.00 1.43 1.05 2.20 1.94 

 

 
Figure 4: The maximum error of the inductance formula (30) 

as a function of 𝛤 for the two-windings range,  
𝑁 = 2.  

 
Figure 5: The maximum error of the inductance formula (30) 

as a function of 𝛤 for the low range, 𝑁 = 3 … 7.  
 

 
Figure 6: The maximum error of the inductance formula (30) 

as a function of 𝛤 for the medium range,  
𝑁 = 8 … 12.  
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Figure 7: The maximum error of the inductance formula (30) 

as a function of 𝛤 for the high range, 𝑁 = 13 … 20.  
 
Therefore, avoiding this approximation would improve the 
accuracy. But fortunately, there is a simpler although partial 
solution: Restricting the domain of definition in three ways, 
depending on the field of application, allows the maximum 
error to be considerably reduced:  
 

1. For RFIC’s, useful restrictions are 𝑁 ≥ 3 and 𝛤 ≥
1.25. According to Table 1, this reduces the maxi-
mum error to 2.3 %.  

 
2. For RFID and telemetry reader antennas and for 

NFC antennas, meaningful restrictions are 𝑁 ≤ 7 
and 𝜌 < 0.15 ([10], p. 46). This reduces the maxi-
mum error to 2.6 %.  

 
3. For RFID and telemetry transponder antennas1, the 

restrictions 3 ≤ 𝑁 ≤ 7 ([10], p. 42) and 𝜌 < 0.15 
([10], p. 46) are sensible. This reduces the maxi-
mum error to 1.5 %.  

 
For wireless charging devices, as things stand now, one is 
free to choose the shape of the coils. In eddy current sensors, 
the strongest normalized impedance response was found for 
square coils [8]. Hence, for these application fields, square 
coils and the formula in [14] are recommended2. The latter 
features a maximum error of 2.0 %, compared to 5.55 % for 
equation (30) at 𝛤 = 1.  
With the reduced maximum errors resulting from the subdo-
mains defined above, the inductance formula (30) is certainly 
precise enough to be used in circuit design. Note that it also 
holds for 𝑁 > 20  with 𝜌 ≤ (𝑁 − 1)/(𝑁 + 1)  ([10], equa-
tion (20b)) for 𝜅 ∈ [1.1, 10] and 𝛾𝜖[1.0,1000].  

6. Comparison with measurements 

The error analysis in the last section revealed that the largest 
errors of the inductance formula (30) arise for square coils. 

 
1 Note that for coils made of round wire, which is often used 
for transponders antennas, other formulae for the mean dis-
tances apply. They can all be found in [15].  

Therefore, it made sense to test the formula against measure-
ments on coils with 𝛤 = 1. So far, measurements seem to 
have been limited to inductors in RFIC’s [10 – 13]. By con-
trast, in this section, measurements on 16 square RFID reader 
antennas manufactured as PCB’s with standard copper layer 
thickness ℎ = 35 μm are reported. They were performed at 
300 kHz (representing DC, justified for 13.56 MHz in ([14], 
section 5)) with an Agilent® 4294A Precision Impedance An-
alyzer and an 42941A Impedance Probe.  
Table 2 lists the 16 reader antennas, characterized by their de-
sign parameters 𝑁, 𝐴, 𝑤, and 𝑠, together with the measured 
inductances 𝐿𝑚𝑒𝑎𝑠  and the percentage deviations of the re-
sults of the inductance formula (30) from the measurements 
and from the exact values. The parameters 𝑤 and 𝑠 are given 
in mils, whereby 1 mil corresponds to 25.4 μm.  
 
Table 2: Dimensional design parameters and measured in-

ductances 𝐿𝑚𝑒𝑎𝑠 of 16 square reader antennas man-
ufactured as standard PCB’s (ℎ = 35 μm), with the 
relative deviations of the inductance formula (30) 
from the measurements (Dev. 1) and from the exact 
values (Dev. 2).  

𝑁     𝐴 
[mm] 

     𝑤 
[mil] 

𝑠 
[mil] 

𝐿𝑚𝑒𝑎𝑠  
[nH] 

Dev. 1 
[%] 

 Dev. 2 
  [%] 

3 20 12   6   543 0.49    0.25 
3   20 20   6   485 0.22    0.67 
3   20 30   6   435 0.02    1.04 
3   20 40   6   390 1.62    1.36 
3   20 30 12   405 0.94    0.90 
3   50 12   6 1719 0.02    0.07 
3   50 20   6 1583 0.03    0.29 
3   50 40   6 1384 0.21    0.58 
3   50 20 12 1512 0.10    0.01 
3   50 30 12 1397 0.32    0.33 
3   50 40 12 1309 0.73    0.52 
4   50 40 12 2042 1.01    0.66 
5   50 40 12 2860 1.07    0.81 
3 100 40 12 3177 0.41    0.28 
5   10 12   6   448 1.64    1.03 
3   50 30 18 1352 0.48    0.10 

 

 
According to Fig. 10-6 of the operation manual of the meas-
urement equipment, the measurement error at 300 kHz was 
less than 1 % for inductances above about 1 μH, and less than 
3 % below. The maximum relative deviation of the induct-
ance formula from the measured values was 1.64 % with a 
respective measurement error of 3 % . For the inductances 
above 1 μH with a respective measurement error of 1 %, the 
largest deviation was 1.07 %. The maximum deviation of the 
formula from the exact values amounted to 1.36 %, in agree-
ment with the error analysis in section 5, which disclosed a 
maximum error of 1.5 % for 3 ≤ 𝑁 ≤ 7 and 𝜌 < 0.15.  

2 Note that the formula in [14] is optimized for a slightly dif-
ferent layout than the one used here, compare Fig. 1 and ([14], 
Fig. 1).  
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7. Implementation in MATLAB 

The source code of the MATLAB function L_RectPla-
narSpiral to calculate the DC inductance of rectangular pla-
nar spiral coils is listed in appendix 4. All quantities are in SI 
units. Besides the inductance 𝐿, the function also returns the 
filling factor 𝜌 given in equation (5). If the data entered rep-
resents an invalid parameter combination as explained in sec-
tion 3, an error message is output. The invalid entry is de-
tected by checking the value of 𝜌. Following are examples to 
test the correct implementation of the code. The data  
 
A = 0.1; B = 0.05; w = 1e-3; s = 5e-4; h = 35e-6; 

 
were used for all ranges of 𝑁. The MATLAB function is run 
by the command 
 
[L, rho] = L_RectPlanarSpiral (N, A, B, w, s, h) 
 
For each of the four ranges of 𝑁, Table 3 lists the number of 
windings 𝑁 to be used in the test, the value of 𝐿 returned by 
the MATLAB function, the exact DC inductance (from Fas-
tHenry2), the relative error of 𝐿, and the value of 𝜌 returned.  
 
Table 3: Example data for testing the MATLAB function pre-

sented in appendix 4.  
𝑁 𝐿 

[𝜇H] 
𝐿𝑒𝑥𝑎𝑐𝑡 
[𝜇H] 

Err. 
[%] 

𝜌 
 

 2  1.064  1.063 0.13 0.0306 
 5  4.785  4.768 0.34 0.0978 
10 13.525 13.398 0.94 0.2317 
15 22.624 22.311 1.41 0.4028 

 

8. Solving inverse problems 

The following example shows how to solve inverse problems 
of coil design with constraints as they typically arise in elec-
trical engineering. The example comprises the design of an 
RFIC inductor, but the same procedure can easily be adapted 
to any field of application.  
The coil is to be etched on the top layer of a 0.35 μm com-
plementary metal-oxide semiconductor (CMOS) process. Let 
the thickness of the layer be ℎ = 0.9 μm. Suppose we dispose 
of an area of 150 μm × 250 μm which is not to be exceeded. 
Let the minimum permitted conductor width and gap between 
conductors be 1.0 μm. We want an inductance of  84.0 nH, 
and 𝑁 shall be as small as possible to keep the loss resistance 
small.  
What values of 𝑁 , 𝐴 , 𝐵 , 𝑤  or 𝑔 , and 𝑠  do we need? The 
straightforward way of solution would be to vary these di-
mensional parameters within the whole domain of definition, 
thereby observing the constraints, and selecting the combina-
tion that comes closest to the targeted inductance.  
With this approach, invalid parameter combinations as ex-
plained in section 3 will inevitably occur. They must either be 
detected and skipped in the nested loops of the parameter var-
iation step or be detected in the results and discarded after-
wards.  
The trouble with invalid parameter combinations can be 
spared by avoiding their occurrence altogether. This can be 

achieved by varying dimensionless parameters within the in-
tervals defined in section 3. To do this, we also need the in-
verse transformation equations to transform the dimension-
less parameters back to dimensional ones after the inductance 
calculations are done. They are given in ([10], equations (12) 
– (15)). Note that, for rectangular coils, we adhere to 𝐴 ≥ 𝐵, 
so that, in these equations, 𝐴 must be replaced by 𝐵, as was 
done in equation (5). The inverse equations then read  
 

𝑠 = 𝜂𝐵, 
 

𝑤 = 𝜅𝜂𝐵, 
with 

𝜂 =
𝜌

(𝑁 − 1)(1 + 𝜌)𝜅 + 1
 , 

 
ℎ =

𝑠

𝛾
 . 

 
The constraints are then considered after varying the param-
eters, by way of selection. The MATLAB code below is based 
on this procedure. On the PC specified in section 5, it solved 
the problem within 2.1 seconds.  
First, the given data is initialized. 𝐴𝑜  and 𝐵𝑜  are the outer-
most coil dimensions, 𝐴𝑜 = 𝐴 + 𝑠 and 𝐵𝑜 = 𝐵 + 𝑠, as can be 
inferred from Fig. 1. We have 𝐴𝑜 = 250 μm, 𝐵𝑜 = 150 μm:  
 
Ao = 250e-6; Bo = 150e-6; h = 0.9e-6; smin = 1e-6; 

Ltarget = 84.0e-9;  

 
Next, vectors (Nv, rv, and kv) for the parameters 𝑁, 𝜌, and 
𝜅 are initialized with sampling values within the intervals de-
fined in section 3 for one of the four ranges of 𝑁. Here, the 
data for the high range (𝑁 = 13 … 20) is shown.  
 
Nv = 13:20; 

rv = linspace (0.01, 0.86, 100); 

kv = linspace (1.01, 10.0, 30); 

Matrix = zeros (length(Nv)*3000, 6); 

ind = 0; 

 
The inductances of 24000 coils are then calculated by call-
ing the function L_RectPlanarSpiral from appendix 4:  
 
for i1 = 1 : length(Nv), 

   N = Nv(i1); 

   for i2 = 1 : length(kv), 

      kappa = kv(i2); 

      for i3 = 1 : length(rv), 

         rho = rv(i3); 

         ind = ind + 1; 

         eta = rho/((N - 1)*kappa*(1 + rho) + 1); 

         so = eta * Bo; 

         B = Bo - so; 

         A = Ao - so; 

         s = eta * B; 

         w = kappa * eta *B; 

         g = w - s; 

         L = L_RectPlanarSpiral (N,A,B,w,s,h); 

         Matrix(ind,:) = [N, A, B, s, g, L]; 

      end 

   end 

end 
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The Matrix now contains the dimensional design parame-
ters and respective inductance of all coil designs. From these, 
those fulfilling the constraints 𝑠 ≥ 1 μm and 𝑔 ≥ 1 μm are 
extracted and stored in Matrix1:  
 
ind_constraints = Matrix(:,4) >= smin & ... 

                  Matrix(:,5) >= smin; 

Matrix1 = Matrix(ind_constraints,:); 

 
From these, the ones whose calculated inductance does not 
deviate from the target value by more than 1 % are extracted 
and stored in Matrix2:  
 
ind_dev = abs(Matrix1(:,6)-Ltarget)/Ltarget<=0.01; 

Matrix2 = Matrix1(ind_dev,:); 

 
From these, the ones with the smallest number of windings 
are selected to keep the resistive loss as small as possible. The 
resulting designs are stored in Matrix3: 
 
ind_minN = Matrix2(:,1) == min(Matrix2(:,1)); 

Matrix3 = Matrix2(ind_minN,:); 

 
From the remaining designs, the final solution vector with the 
smallest deviation of the calculated inductance from the target 
value is extracted:  
 
ind_solution = abs(Matrix3(:,6) - Ltarget) == ... 

    min(abs(Matrix3(:,6) - Ltarget)); 

solution_vector = Matrix3(ind_solution,:) 

 
If, in the given range of 𝑁, the problem does have a solution, 
then the solution vector contains all design parameters and the 
resulting inductance. If there is no solution, the solution vec-
tor will be empty, and another one of the four ranges of 𝑁 
defined in section 3 or a new one with 𝑁 > 20 (see section 5)  
must be tried. For our example problem, the solution is:  
 
𝑁 = 17, 𝐴 = 248.9 μm, 𝐵 = 148.9 μm, 𝑠 = 1.109 μm,  
𝑔 = 1.043 μm, 𝐿 = 83.5 nH.  
 
The calculated DC inductance 𝐿 is 0.6 % off target. The ex-
act DC inductance calculated with FastHenry2 is 82.5 nH. 
Thus, the effective error of the inductance formula is 1.2 %, 
in accordance with the maximum error of 1.8 % as disclosed 
by linear interpolation of Table 1 for 𝛤 = 1.67. At 4.0 GHz, 
the exact inductance decreases by only 0.007 % compared to 
DC. Hence, at 4.0 GHz, the error of the inductance formula 
also amounts to 1.2 %. The inductance at 4.0 GHz was com-
puted by requesting 10 × 10 subfilaments in FastHernry2 to 
consider the frequency effects, see ([14], section 5). The run 
time of FastHenry2 on the PC specified in section 5 was 3 
hours and 7 minutes.  

9. Conclusions 

A precise formula for the DC inductance of rectangular planar 
spiral coils with an aspect ratio of up to 4.0 and having a rec-
tangular conductor cross section with an aspect ratio of height 
to width not exceeding unity has been derived from physical 

principles. The formula is scalable; hence, it is valid for coils 
within any inductance range and of any dimension.  
The formula is akin to the current sheet approximation [12], 
but with the difference that the gaps between the conductor 
segments are considered. As a consequence, it is much more 
precise. Its maximum error for the usual range of parameters 
used for inductors in RFIC’s and in antennas in RFID, NFC, 
and telemetry devices is 2.6 %. This has been tested system-
atically on almost 194000  reference designs of exactly 
known inductance. To this end, dimensionless parameters to 
reduce the number of dimensions of the parameter space by 
one have been introduced. The formula has also been tested 
against measurements on 16 RFID antennas manufactured as 
PCB’s. It is based on the method of mean distances [15].  
For wireless charging devices and for eddy current sensors for 
nondestructive testing it has been found that square coils and 
the formula presented in [14] are to be preferred.  
The source code of a MATLAB function for evaluating the 
formula, together with numerical examples, have been pro-
vided. Moreover, an example for solving a coil design prob-
lem for RFIC’s with constraints as they arise in practical en-
gineering has been presented, together with the complete 
MATLAB code.  
Exact expressions for the GMD, AMSD, and AMD between 
a rectangle and itself and between two displaced congruent 
rectangles are derived in the appendices. Those for the AMD 
and one for the AMSD seem to be new. They have been used 
to verify known or to derive new approximations, like e.g. for 
the GMD between two displaced congruent rectangles, equa-
tion (20). So far, only an approximation for two displaced line 
segments was known. One of the exact expressions for the 
AMSD is used in the inductance formula.  
The paper presents the first example in the literature of an ap-
plication of the method of mean distances where any curtail-
ment in calculating the partial self-inductance of conductor 
segments as it is often found in the literature (like e.g. neglect-
ing the AMSD and AMD or replacing them by the GMD), 
leads to a clearly verifiable error in the calculated total induct-
ance. The method of mean distances was originally proposed 
by Rosa [19], although he did not actually carry it out. To my 
knowledge, its first full use was reported in [15] where it was 
also justified mathematically ([15], section 7). But the partial 
inductance of single wires to which it was applied cannot be 
measured ([15], section 8). Further, the inductance of the 
small shorted two-wire transmission lines of a few nH, used 
as examples of an application to components that are at least 
measurable in principle, was too small to be measured accu-
rately. Thus, these examples were not suitable either to pro-
vide experimental evidence of the usefulness of the method 
([15], section 10). The first application to a precisely measur-
able inductance was reported in [22] on large shorted two-
wire transmission lines. But due to the proximity effect oc-
curring in the main conductors, the method of mean distances 
could only be applied to the small shorting rods, and the effect 
of neglecting the AMSD and AMD in calculating the induct-
ance of the shorting rods on the total inductance was ≤ 1.5 % 
([22], p. 33), comparable to the measurement error of 1 % 
([22], p. 32). By contrast, in this paper, neglecting the AMSD 
and AMD in the calculation of the partial self-inductance of 
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coils has led to errors in the total inductance of up to 30 %, 
and up to 16 % for replacing the AMD by the GMD. Due to 
the scalability of coil inductance ([10], p. 39), these results 
can be reproduced for coils of any dimension, in any induct-
ance range, and at any frequency low enough to represent DC. 
Therefore, this paper provides the first experimentally verifi-
able evidence of the usefulness of the full method of mean 
distances as introduced in [15].  
It has been found that the maximum error of the formula over 
all parameters except the coil aspect ratio strictly decreases 
with increasing coil aspect ratio up to a certain limit, depend-
ing on the number of turns. Up to this limit, the maximum 
error for any coil design in function of the coil aspect ratio 
can be found by linear interpolation of the data provided in 
this paper. Above this limit, the error has been found to in-
crease or even to become chaotic. Note that the maximum er-
ror of the current sheet approximation [12] also decreases, but 
it is not possible to define a convex domain of definition 
where the error decreases strictly.  
The maximum error of the formula (5.6 %) is clearly larger 
than the largest contribution (0.4 %) found from the approx-
imations for the mean distances. The conclusion is that the 
error must originate from the concept of average-sized sin-
gle-turn coil on which the formula is based. The varying 
lengths of the parallel conductor segments on one side of the 
spiral coil are all approximated by the same average length. 
This has been a prerequisite for using the method of mean 
distances for a row of rectangles. Thus, considering these 
length variations in future work may be expected to signifi-
cantly improve the accuracy of the formula, but at the cost of 
substantially increasing its complexity, provided that it will 
still be possible to derive a closed formula at all, rather than 
just being reverted to the Greenhouse method [9].  
Transponder antennas are often manufactured from round 
wire. It would be desirable to derive a modified formula for 
coils with circular conductor cross section. Formulae for all 
respective mean distances can be found in [15], even for the 
high-frequency limits (but neglecting the proximity effect). 
The challenge will be that the software FastHenry2 is limited 
to conductors of rectangular cross section, so that other 
means for doing exact inductance calculations for the error 
analysis will have to be sought.  

Appendix 1 

In this appendix, the exact expression for log 𝐺𝑀𝐷2  is de-
rived, i.e. the logarithm of the GMD between two congruent 
rectangles of width 𝑠 and height ℎ, horizontally displaced by 
the distance 𝑤 , see Fig. 8, and the exact expression for 
log 𝐺𝑀𝐷1, the logarithm of the GMD between a single rec-
tangle and itself.  
The definition of the GMD is given by the double area inte-
gral normalized by 1/𝐴2 in equation (7). First, we must find 
the antiderivative 𝐺 given by the indefinite integral  
 
𝐺(𝑥 − 𝑥′, 𝑦 − 𝑦′) = 

∫ ∫ ∫ ∫ log√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 𝑑𝑥𝑑𝑥′𝑑𝑦𝑑𝑦′. (31) 

 
 

 
 
Figure 8: Two horizontally displaced congruent rectangles 

with the coordinates of the edge points. 
 
Noting that log √𝑥 = (1/2) log 𝑥, finding the solution is te-
dious but straightforward. It was also presented in a different 
form in [23]. The result is  
 
    𝐺(𝑥 − 𝑥′, 𝑦 − 𝑦′) = 

−
1

48
[(𝑥 − 𝑥′)4 − 6(𝑥 − 𝑥′)2(𝑦 − 𝑦′)2 + (𝑦 − 𝑦′)4]

∙ log[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2] 

+
1

6
(𝑥 − 𝑥′)(𝑦 − 𝑦′) [(𝑥 − 𝑥′)2 arctan

𝑦 − 𝑦′

𝑥 − 𝑥′

+ (𝑦 − 𝑦′)2 arctan
𝑥 − 𝑥′

𝑦 − 𝑦′
] 

−
25

48
(𝑥 − 𝑥′)2(𝑦 − 𝑦′)2.                                         (32) 

 
Apart from the normalizing factor 1/𝐴2 in equation (7), we 
need the definite integral  
 
𝐼𝐺 = 

∫ ∫ ∫ ∫ log√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2𝑑𝑥𝑑𝑥′𝑑𝑦𝑑𝑦′. (33) 
𝑥2

𝑥1

𝑥2
′

𝑥1
′

𝑦2

𝑦1

𝑦2
′

𝑦1
′

 

 
The coordinates of the edge points in Fig. 8 also represent the 
integration limits. According to Fig. 8, they are  
 

𝑥1 = 0,   𝑥2 = 𝑠,   𝑦1 = 0,   𝑦2 = ℎ,                  (34𝑎) 
𝑥1

′ = 𝑤,   𝑥2
′ = 𝑤 + 𝑠,   𝑦1

′ = 0,   𝑦2
′ = ℎ.         (34𝑏) 

 
With the limits (34a) and (34b), the integral 𝐼𝐺  reads  
 

  𝐼𝐺 = 4𝐺(−𝑤, 0)                                                    
                 −2𝐺(−𝑤, ℎ) − 2𝐺(−𝑤, −ℎ)                       
                 −2𝐺(𝑠 − 𝑤, 0) − 2𝐺(−𝑤 − 𝑠, 0)               
                 +𝐺(𝑠 − 𝑤, ℎ) + 𝐺(𝑠 − 𝑤, −ℎ)                    

           +𝐺(−𝑤 − 𝑠, ℎ) + 𝐺(−𝑤 − 𝑠, −ℎ).  (35) 
 
According to equation (32), the antiderivative 𝐺 is an even 
function of the differences 𝑥 − 𝑥′ and 𝑦 − 𝑦′. Therefore, the 
signs of the differences in the arguments of 𝐺 don’t matter, 
and equation (35) simplifies to 
 

𝐼𝐺 = −4𝐺(𝑤, ℎ) + 4𝐺(𝑤, 0)                                 
+2𝐺(𝑤 − 𝑠, ℎ) − 2𝐺(𝑤 − 𝑠, 0)                  
+2𝐺(𝑤 + 𝑠, ℎ) − 2𝐺(𝑤 + 𝑠, 0).       (36) 

 
We must normalize the integral (36) by the square of the rec-
tangular area 𝐴 = 𝑠ℎ, which was omitted in equation (33):  
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log 𝐺𝑀𝐷2 =
1

(𝑠ℎ)2
𝐼𝐺 .                               (37) 

 
Evaluating the six terms of equation (36) with the help of the 
antiderivative (32), equation (37) yields  
 

log𝐺𝑀𝐷2 =
1

(𝑠ℎ)2
{

1

6
𝑤4 log √1 +

ℎ2

𝑤2
 

+
1

12
(−6𝑤2ℎ2 + ℎ4) ∙ log(𝑤2 + ℎ2)    

−
1

12
(𝑤 + 𝑠)4 log √1 +

ℎ2

(𝑤 + 𝑠)2
 

−
1

24
[−6(𝑤 + 𝑠)2ℎ2 + ℎ4] ∙ log[(𝑤 + 𝑠)2 + ℎ2]  

−
1

12
(𝑤 − 𝑠)4 log √1 +

ℎ2

(𝑤 − 𝑠)2
 

−
1

24
[−6(𝑤 − 𝑠)2ℎ2 + ℎ4] ∙ log[(𝑤 − 𝑠)2 + ℎ2]  

−
2

3
𝑤ℎ (𝑤2 arctan

ℎ

𝑤
+ ℎ2 arctan

𝑤

ℎ
)                                         

+
1

3
(𝑤 + 𝑠)ℎ [(𝑤 + 𝑠)2 arctan

ℎ

𝑤 + 𝑠
+ ℎ2 arctan

𝑤 + 𝑠

ℎ
] 

+
1

3
(𝑤 − 𝑠)ℎ [(𝑤 − 𝑠)2 arctan

ℎ

𝑤 − 𝑠
+ ℎ2 arctan

𝑤 − 𝑠

ℎ
]} 

−
25

12
 .                                                                                        (38) 

 
It is possible to rewrite equation (38) in a simpler and more 
symmetrical form. But then it loses its numerical stability for 
large 𝑤 and 𝛾 = 1 for the two higher ranges of 𝑁. This sta-
bility is important in subsection 4.3. Therefore, the equation 
is presented in the form (38) 3.  
An equivalent expression was also given by Gray ([24], 
equation (113)) and revised by Rosa ([25], equation (8)), but 
as a function of the gap 𝑔 instead of the winding distance 𝑤, 
and for the more general case of the GMD between two dif-
ferently sized rectangles. The symmetrical form of equation 
(38) can also be derived from Higgins’ formulae ([26], equa-
tions (21) – (24)), which give the logarithm of the GMD be-
tween two arbitrarily positioned rectangles. All three results, 
i.e. equation (38), ([25], equation (8)), and ([26], equations 
(21) – (24)), are analytically equivalent.  
In the limit of vanishing displacement 𝑤 → 0, equation (38) 
turns into the exact expression for log 𝐺𝑀𝐷1, the GMD be-
tween a single rectangle (of width 𝑠 and height ℎ) and itself 
as published by Maxwell ([27], § 692 (6)) and Gray ([24], 
equation (114)):  
 
 
 

 
3  Note that equation (38) is suitable for calculating 
log 𝐺𝑀𝐷𝐿,2 but not log 𝐺𝑀𝐷𝔠̅, since for large 𝑤 and small ℎ, 

log 𝐺𝑀𝐷1 = log √𝑠2 + ℎ2 −
1

6

𝑠2

ℎ2
log √1 +

ℎ2

𝑠2
                      

−
1

6

ℎ2

𝑠2
log √1 +

𝑠2

ℎ2
                      

+
2

3
(

𝑠

ℎ
arctan

ℎ

𝑠
+

ℎ

𝑠
arctan

𝑠

ℎ
) −

25

12
 .  (39) 

Appendix 2 

In this appendix, the exact expression for 𝐴𝑀𝑆𝐷2
2 between 

two rectangles as shown in Fig. 8 and the exact expression 
for 𝐴𝑀𝑆𝐷1

2 between a rectangle and itself are derived. The 
definition of the AMSD squared is given by the double area 
integral normalized by 1/𝐴2 in equation (13).  
Equations (31) and (33) apply analogously, only that the log-
arithm and the square root in the integrand are omitted, while 
the definite integral in the limits (34) is designated by 𝐼𝑆 and 
the antiderivative by 𝑆, which reads  
 
    𝑆(𝑥 − 𝑥′, 𝑦 − 𝑦′) = 

∫ ∫ ∫ ∫[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2] 𝑑𝑥𝑑𝑥′𝑑𝑦𝑑𝑦′.           

 
The solution is easily found to be  
 
    𝑆(𝑥 − 𝑥′, 𝑦 − 𝑦′) = 

1

24
(𝑥 − 𝑥′)2(𝑦 − 𝑦′)2[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2].     (40) 

 
Equations (36) and (37) apply analogously, apart from the 
fact that, from equation (40), it is evident that 𝑆  vanishes 
when 𝑥 − 𝑥′ or 𝑦 − 𝑦′ is naught. Hence, the analog to equa-
tion (36) shortens to  
 

𝐼𝑆 = −4𝑆(𝑤, ℎ) + 2𝑆(𝑤 − 𝑠, ℎ) + 2𝑆(𝑤 + 𝑠, ℎ).     (41) 
 
Evaluating the three terms of equation (41) with the help of 
the antiderivative (40) and the normalization (37) results in  
 

𝐴𝑀𝑆𝐷2
2 = 𝑤2 +

1

6
(𝑠2 + ℎ2).                (42) 

 
For 𝑤 = 0 one obtains the AMSD squared between a single 
rectangle and itself:  
 

𝐴𝑀𝑆𝐷1
2 =

1

6
(𝑠2 + ℎ2).                       (43) 

 
Equation (43) was also presented in ([13], equation (3.25)) 
without derivation. The result (42), though, could not be 
found in the literature. It was checked with the help of nu-
merical integration of the normalized double area integrand 
in equation (13) by iterating the MATLAB function 

equation (38) becomes numerically unstable unless 𝑠 = ℎ , 
see subsection 4.3.  
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integral2. The equality could be established to a relative 
accuracy of 10−10.  

Appendix 3 

In this appendix, the exact expression for 𝐴𝑀𝐷2 between two 
rectangles as shown in Fig. 8 and the exact expression for 
𝐴𝑀𝐷1 between a rectangle and itself are derived. The defini-
tion of the AMD is given by the double area integral normal-
ized by 1/𝐴2 in equation (15).  
Equations (31) and (33) apply analogously, only that the log-
arithm in the integrand is omitted, while the definite integral 
in the limits (34) is designated by 𝐼𝐴𝑟  and the antiderivative 
by 𝐴𝑟. It is given by  
 
   𝐴𝑟(𝑥 − 𝑥′, 𝑦 − 𝑦′) = 

∫ ∫ ∫ ∫ √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 𝑑𝑥𝑑𝑥′𝑑𝑦𝑑𝑦′.           

 
Finding the solution is tedious but straightforward. It reads  
 
     𝐴𝑟(𝑥 − 𝑥′, 𝑦 − 𝑦′) = 

= −
1

60
[(𝑥 − 𝑥′)4 − 3(𝑥 − 𝑥′)2(𝑦 − 𝑦′)2 + (𝑦 − 𝑦′)4] 

∙ √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 

+
1

24
(𝑥 − 𝑥′)(𝑦 − 𝑦′) 

∙ {(𝑦 − 𝑦′)3 log [𝑥 − 𝑥′ + √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]            

+ (𝑥 − 𝑥′)3 log [𝑦 − 𝑦′ + √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]} . (44) 
 
According to equation (44), only the first summand of the 
antiderivative 𝐴𝑟 is an even function of the differences 𝑥 −
𝑥′ and 𝑦 − 𝑦′. Its second summand is an odd function. Thus, 
the antiderivative does not possess any simplifying symme-
tries. Therefore, the expression for the definite integral can-
not be simplified. It remains in the form analogous to equa-
tion (35):  

  𝐼𝐴𝑟 = 4𝐴𝑟(−𝑤, 0)                                                    
                 −2𝐴𝑟(−𝑤, ℎ) − 2𝐴𝑟(−𝑤, −ℎ)                      
                 −2𝐴𝑟(𝑠 − 𝑤, 0) − 2𝐴𝑟(−𝑤 − 𝑠, 0)              
                 +𝐴𝑟(𝑠 − 𝑤, ℎ) + 𝐴𝑟(𝑠 − 𝑤, −ℎ)                   

           +𝐴𝑟(−𝑤 − 𝑠, ℎ) + 𝐴𝑟(−𝑤 − 𝑠, −ℎ).  (45) 
 

Evaluating equation (45) with the help of the antiderivative 
(44) and considering the normalization (37) yields equation 
(46)4.  
The limit 𝑤 → 0 of equation (46) does not exist. The AMD 
between a single rectangle and itself must be calculated sep-
arately. It can be deduced from equation (45) by setting 𝑤 =
0 with 𝐴𝑟(0,0) = 0. In the antiderivative (44), the second 
summand is an odd function that vanishes when 𝑥 − 𝑥′ or 
𝑦 − 𝑦′  is naught, so that only the first summand remains, 
which is even, hence 𝐴𝑟(𝑠, 0) = 𝐴𝑟(−𝑠, 0) and 𝐴𝑟(0, ℎ) =
𝐴𝑟(0, −ℎ).  

 
4 Note that equation (46) is suitable for calculating 𝐴𝑀𝐷𝐿 but 
not 𝐴𝑀𝐷𝔠̅, since for large 𝑤 and small ℎ, equation (46) be-
comes numerically unstable, see subsection 4.3.  

𝐴𝑀𝐷2 =
1

𝑠2
(

1

15
[
𝑤4

ℎ2
− 3𝑤2 + ℎ2] √𝑤2 + ℎ2 

+
1

6
𝑤ℎ2 log [−𝑤 + √𝑤2 + ℎ2]                 

+
1

12

𝑤4

ℎ
log [

−ℎ + √𝑤2 + ℎ2

ℎ + √𝑤2 + ℎ2
]                  

−
1

30
{[

(𝑤 − 𝑠)4

ℎ2
− 3(𝑤 − 𝑠)2 + ℎ2] √(𝑤 − 𝑠)2 + ℎ2 

+ [
(𝑤 + 𝑠)4

ℎ2
− 3(𝑤 + 𝑠)2 + ℎ2] √(𝑤 + 𝑠)2 + ℎ2}     

−
1

12
ℎ2 {(𝑤 − 𝑠) log [−(𝑤 − 𝑠) + √(𝑤 − 𝑠)2 + ℎ2] 

+(𝑤 + 𝑠) log [−(𝑤 + 𝑠) + √(𝑤 + 𝑠)2 + ℎ2]}   

+
1

24

1

ℎ
{(𝑤 − 𝑠)4 log

ℎ + √(𝑤 − 𝑠)2 + ℎ2

−ℎ + √(𝑤 − 𝑠)2 + ℎ2
                         

+(𝑤 + 𝑠)4 log
ℎ + √(𝑤 + 𝑠)2 + ℎ2

−ℎ + √(𝑤 + 𝑠)2 + ℎ2
})                      

+
1

3

1

ℎ2
(2𝑤3 + 𝑤𝑠2) .                                                       (46) 

 
The definite integral (45) then simplifies to  
 

𝐼𝐴𝑟 = −4𝐴𝑟(0, ℎ) − 4𝐴𝑟(𝑠, 0) 
+𝐴𝑟(𝑠, ℎ) + 𝐴𝑟(𝑠, −ℎ)                              
+𝐴𝑟(−𝑠, ℎ) + 𝐴𝑟(−𝑠, −ℎ).           (47)  

 
Evaluating equation (47) with the help of the antiderivative 
(44) and considering the normalization (37) yields  
 

𝐴𝑀𝐷1 =
1

15
[
𝑠3

ℎ2
+

ℎ3

𝑠2
− (

𝑠2

ℎ2
+

ℎ2

𝑠2
− 3) √𝑠2 + ℎ2] 

+
1

6
(

ℎ2

𝑠
log

𝑠 + √𝑠2 + ℎ2

ℎ
+

𝑠2

ℎ
log

ℎ + √𝑠2 + ℎ2

𝑠
) . (48) 

 
Equation (48) is symmetrical on exchanging 𝑠 and ℎ, as are 
equations (39) and (43), as they all must be. The results (44), 
(46), and (48) could not be found in the literature. They were 
checked with the help of numerical integration of the normal-
ized double area integrand in equation (15) by iterating the 
MATLAB function integral2. The equality could be es-
tablished to a relative accuracy of 10−10.  
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Appendix 4 

Source code of the MATLAB function L_RectPlanarSpi-
ral:  
 
function [L, rho] = L_RectPlanarSpiral ... 

                    (N, A, B, w, s, h) 

if B > A, 

   Asave = A; 

   A = B; 

   B = Asave; 

end 

L = NaN;  

mu0 = 4 * pi * 1e-7; 

mu4pi = mu0 / (4*pi); 

mess = 'Invalid parameter combination.'; 

a = A - (N - 1)*w; 

b = B - (N - 1)*w; 

rho = ((N - 1)*w + s) / (B - (N - 1)*w); 

switch N, 

 case 2; 

  if rho > 0.36001, disp(mess); return; end 

 case {3, 4, 5, 6, 7}; 

  if rho > 0.52001, disp(mess); return; end 

 case {8, 9, 10, 11, 12}; 

  if rho > 0.78001, disp(mess); return; end 

 case {13, 14, 15, 16, 17, 18, 19, 20}; 

  if rho > 0.86001, disp(mess); return; end 

end    

if N >= 21; 

  if rho>(N-1)/(N+1), disp(mess); return; end 

end 

k = 1 : N - 1;   

ks = -(N - 1) :  N - 1; 

log_GMD1 = log(s + h) - 3/2;  

log_GMD2 = @(w) log(s + h) + log(w/(2*s)) -... 

            (-1.46*s/h + 1.45)/(2.14*s/h + 1); 

GMD1 = 0.2235*(s + h); 

GMD2 = @(w) exp(log_GMD2(w)); 

AMD1 = GMD1;  

AMD2 = @(w) GMD2(w);  

AMSD1sq = 1/6*(s^2 + h^2);  

AMSD2sq = @(w) w.^2; 

log_GMD_L = (N*(log_GMD1) + ...  

           2*sum((N-k).*log_GMD2(k*w))) / N^2; 

AMSD_L = (N*AMSD1sq + ... 

           2*sum((N-k).*AMSD2sq(k*w))) / N^2;  

AMD_L = (N*AMD1 + ... 

               2*sum((N-k).*AMD2(k*w))) / N^2; 

log_GMD_a = sum((N-abs(ks)).* ... 

                         log(a + ks*w)) / N^2; 

log_GMD_b = sum((N-abs(ks)).* ... 

                         log(b + ks*w)) / N^2; 

AMSD_a = sum((N-abs(ks)).* ... 

                     AMSD2sq(a + ks*w)) / N^2; 

AMSD_b = sum((N-abs(ks)).* ... 

                     AMSD2sq(b + ks*w)) / N^2;  

AMD_a = sum((N-abs(ks)).*(a + ks*w)) / N^2; 

AMD_b = sum((N-abs(ks)).*(b + ks*w)) / N^2; 

  

La = mu4pi * 2 * (a*log(a+sqrt(a^2+AMSD_L))... 

  - a*log_GMD_L - sqrt(a^2 + AMSD_L) + AMD_L); 

Lb = mu4pi * 2 * (b*log(b+sqrt(b^2+AMSD_L))... 

  - b*log_GMD_L - sqrt(b^2 + AMSD_L) + AMD_L); 

Ma = mu4pi * 2 * (a*log(a+sqrt(a^2+AMSD_b))... 

  - a*log_GMD_b - sqrt(a^2 + AMSD_b) + AMD_b); 

Mb = mu4pi * 2 * (b*log(b+sqrt(b^2+AMSD_a))... 

  - b*log_GMD_a - sqrt(b^2 + AMSD_a) + AMD_a); 

L = 2 * N^2 * (La + Lb - (Ma + Mb)); 
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