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Abstract 
 In this paper, we discuss and analyze the effect of error 
propagation on the performance polar codes decoded using 
the successive cancellation algorithm. We show that error 
propagation due to erroneous bit decision is a catastrophic 
issue for the successive cancellation decoding of polar codes. 
Even a wrong decision on a single bit may cause an 
abundance of successor bits to be wrongly decoded. 
Furthermore, we observe that the performance of polar codes 
is significantly improved if even single bit errors are detected 
and corrected before the decoding of successor bits. 

1. Introduction 
Polar codes can achieve the capacity discrete memoryless 
channels, such as binary erasure channel (BEC), and binary 
symmetric channel. Polar codes are decoded using the 
successive cancellation (SC) algorithm which is introduced in 
[1]. The complexity of the SC decoding algorithm is on the 
order of  𝑂(𝑁𝑙𝑜𝑔𝑁) where 𝑁 is the code-word length such 
that 𝑁 = 2*, 𝑛 ∈ ℕ . Hardware architectures for successive 
cancellation list decoding of polar codes in the log-likelihood 
ratio domain have been presented in [2]. In [3], the improved 
versions of the successive cancellation decoding algorithm, 
the successive cancellation list (SCL) and the successive 
cancellation stack (SCS) decoding methods, which show 
better performance for polar codes without increasing the 
code lengths, are introduced. A new SC-based decoding 
algorithm called SC flip, which preserves the low memory 
requirements of original SC decoder is studied in [4]. In [5], 
the authors focus on short length polar codes and present a 
method which can enhance the performance of the successive 
cancellation decoder. Systematic polar codes, which are used 
in channel estimation in [6], are introduced in [7].  
 
In [1], Arıkan introduced the belief propagation (BP) 
decoding of polar codes.  It is pointed out in [8] that soft 
information exchange in BP decoders play an important role 
for channels other than binary erasure channels. In [9], early 
stopping criteria are utilized for BP decoders to reduce the 
computation complexity. In [10], authors proposed a hybrid 
decoding approach which makes use of both BP decoding and 
SC decoding, and in this approach, when BP decoder fails SC 
algorithm is utilized. Error floor problem of polar codes 
employing BP decoder is alleviated using the multi-trellis 

approach in [11]. Early stopping criteria is employed in [12] 
for the decoding of polar codes employing permuted factor 
graphs. Deep learning based methods for the decoding of 
polar codes is used in [13]. Complexity reduction of BP 
decoders eliminating unnecessary node calculations is studied 
in [14]. 
 
Recently it is shown in [15]-[16] that polar codes utilizing SC 
list decoders concatenated with cyclic redundancy check 
(CRC) codes outperforms both turbo and low density parity 
check codes. In [17], the authors proposed a concatenated 
structure consisting of SC stack (SCS) and CRC codes, and it 
is shown in [17] that SCS with CRC achieves almost the same 
performance of turbo and LDPC codes. In [18] a method to 
find the optimal CRC polynomial is proposed, and it is shown 
that the optimal CRC outperforms the standard CRC given in 
[19]. To improve the code performance, the use of CRC is 
constrained to only those bits [20] which generate the 
minimum Hamming weight polar code-words. 
 
From hardware implementation point of view, to decrease the 
decoding latency of the SC decoders which arises from the 
sequential decoding operations, a semi-parallel decoding 
architecture with low latency is proposed in [21] where 
resource sharing is employed. In [22], an overlapped 
computation with a precomputation approach is proposed to 
reduce the decoding latency and improve the throughput. It is 
reported in [22] that the throughput is doubled compared to 
the throughput of [21]. Another low latency SC decoder is 
proposed in [23] where it is shown that a decoding latency of 
88% for a rate of 0.7 with block length 218 is achieved for 
polar codes. 
  
In [24]-[25], concatenated code structures involving polar 
codes as inner codes and Reed-Solomon codes as outer codes 
are proposed. Convolutional codes are concatenated with 
polar codes in [26] where it is shown that slightly better 
performance is achieved sacrificed decoding complexity. In 
[27]-[28], low-density parity-check codes (LDPC) and polar 
codes are concatenated, and it is shown that the resulting code 
remedies the error floor problem of the LDPC codes. 
   
In this paper, we analysis the effect of error propagation on 
the performance of successive cancellation (SC) decoding of 
polar codes. The remainder of this paper is organized as 
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follows. In Section II, the concept of polar encoding and SC 
decoding is briefly visited. In Section III, we discuss and 
analysis the effect of error propagation on the performance of 
SC decoding. Simulation results are presented in Section IV. 
Finally, the conclusions are drawn in Section V.   

2. Polar Codes and Successive Cancelation 
Decoding Algorithm 

2.1. Polar code construction  

A polar code is constructed considering 𝑁  independent 
copies of a discrete binary memoryless channel 𝑊 . These 
channels are combined in a recursive manner, followed by 
channel spliting stage [1], [4]. The split channels with large 
capacities are used for the transmission of information bits 
whereas low capacity split channels are used for frozen bits, 
i.e., parity bits.   
 
For the construction of a polar code of rate 
 

𝑅 ≜
𝐾
𝑁 , 0 < 𝐾 < 𝑁 

 
we choose the 𝐾 split channels out of 𝑁 split channels with 
large capacities. These 𝐾  channels are called non-frozen 
channels, and they are used for the transmission of 
information bits. The remaining channels are not used for 
carrying information and these channels are called frozen 
channels. A polar code-word is obtained using 𝑥89= 𝑢89𝐺9 
where 𝐺9  is the generator matrix and 𝑢89  is an 𝑁-bit vector 
consisting of 𝐾 information bits and 𝑁 −𝐾 frozen bits. We 
denote the set of frozen channel indices by 𝐴>	and the set of 
non-frozen channel indices by 𝐴 [1], [4]. 

2.1.1. The Kernel Encoding and Decoding Units 

Kernel Encoding Unit: 
 
The kernel encoding unit of the polar code is depicted in 
Figure 1. 

 

 
Figure 1: The Kernel encoding unit. 

 
From Figure 1, we can write that 

 
𝑐 = 𝑎 ⊕ 𝑏									𝑑 = 𝑏. 

 
where 𝑢E = [𝑎	𝑏] is the data vector and  𝑥̅ = [𝑐	𝑑] is the polar 
code-word. The polar encoding operation can be described 
using 

	𝑥̅ = 𝑢E𝐺 (1)	
 

where 𝐺  is the generator matrix, and its value for 	𝑁 = 2 
equals to  

𝐺 = J1 0
1 1K. 
 
 

The generator matrix for an arbitrary 𝑁 value is constructed 
using the formula 

𝐺9 = 𝐵9𝐹⨂* 
 
where we have 

𝐹 ≜ J1 0
1 1K 

 
and 𝐵9 is calculated in a recursive manner using 
 

𝐵9 = 𝑅9(𝐼P⨂𝐵9/P) 
where 

𝐵P = 𝐼P 
 
and 𝑅9 is the odd even permutation matrix. 
 
𝑅9  denotes the 𝑁 ×𝑁  reverse shuffle permutation matrix 
defined by 
 

(𝑠8, 𝑠P, 𝑠T,⋯ , 𝑠9)𝑅9 = (𝑠8, 𝑠T,⋯	𝑠9V8, 𝑠P, 𝑠W,⋯ 𝑠9).	 
 
For instance, for (𝑠8, 𝑠P, 𝑠T, 𝑠W)  the matrix 𝑅W is found from  
 

(𝑠8, 𝑠P, 𝑠T, 𝑠W)𝑅W = (𝑠8, 𝑠T, 𝑠P, 𝑠W) 
as 

𝑅W = X

1		0		0		0
0		0		1		0
0		1		0		0
0		0		0		1

Y .	

 
Since    

(𝑠8, 𝑠P, 𝑠T, 𝑠W) X

1		0		0		0
0		0		1		0
0		1		0		0
0		0		0		1

Y = (𝑠8, 𝑠T, 𝑠P, 𝑠W). 

 
 
Kernel Decoding Unit: 
 
The kernel decoding unit of Figure 1 is depicted in Figure 2 
where  𝑐̂ and 𝑑[  denote the received signals.  

 
Figure 2: The Kernel decoding unit. 
 
Using Figure 2, we can write that 

 
𝑎\ = 𝑐̂ ⊕ 𝑑[															𝑏] = 𝑑[ 	

 
from which we can write the probabilities 
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𝑃(𝑎\ = 0) = 𝑃(𝑐̂ = 0	)𝑃_𝑑[ = 0`

+ 𝑃(𝑐̂ = 1	)𝑃_𝑑[ = 1` 
(2)	

 
 

𝑃(𝑎\ = 1) = 𝑃(𝑐̂ = 0	)𝑃_𝑑[ = 1`
+ 𝑃(𝑐̂ = 1	)𝑃_𝑑[ = 0`. (3)	

 
𝐿𝑅(𝑎\) is defined as 
 

𝐿𝑅(𝑎\) =
𝑃(𝑎\ = 0)
𝑃(𝑎\ = 1) 

(4)	

 
in which employing (2) and (3), we get 
 

𝐿𝑅(𝑎\) =
1 + 𝐿𝑅(𝑐̂)𝐿𝑅(𝑑[)
𝐿𝑅(𝑐̂) + 𝐿𝑅(𝑑[)

. (5)	

 
Following a similar approach, we can express  the likelihood  
𝐿𝑅_𝑏]` as 
 

𝐿𝑅_𝑏]` = [𝐿𝑅(𝑐̂)]8VPf\𝐿𝑅_𝑑[`. 					(6)	
 
The formulas in (5) and (6) can be recursively expressed for 
those polar decoders constructed for 𝑁 > 2 in [1]. 
 
Polar Encoding Unit for 𝑁 = 4: 
 
The polar encoding unit for 𝑁 = 4 can be constructed using 
the Kernel encoding units as shown in Figure 3. 
 

 
 
Figure 3: Polar encoding unit for 𝑁 = 4. 
 
The decoding unit of Figure 3 can be drawn as in Figure 4. 

 
 
Figure 4: Polar decoding unit for 𝑁 = 4. 

 
The decoding path of the bit 𝑢8 using Figure 4 can be drawn 
as in Figure 5 where it is seen that the decoding path shown 
by bold lines can be drawn as a tree as shown in the lower 
part of Figure 5.  
 
In Figure 5, the likelihood ratios for 𝑔8 and 𝑔P are calculated 
as 
 

𝐿𝑅(𝑔8) =
1 + 𝐿𝑅(𝑥8)𝐿𝑅(𝑥P)
𝐿𝑅(𝑥8) + 𝐿𝑅(𝑥P)

 

 

										𝐿𝑅(𝑔P) =
1 + 𝐿𝑅(𝑥T)𝐿𝑅(𝑥W)
𝐿𝑅(𝑥T) + 𝐿𝑅(𝑥W)

			 

 
 
Figure 5: Decoding path of 𝑢8  for 𝑁 = 4  and its tree 
representation. 
 

 
Figure 6 Decoding path of 𝑢W for 𝑁 = 4. 

 
The decoding path of 𝑢W shown by bold lines in Figure 6 can 
be redrawn in a tree structure as shown in Figure 7. 
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Figure 7 Decoding tree of 𝑢W for 𝑁 = 4. 

 
In Figure 7, the likelihood ratios for 𝑔8 , 𝑔P  and 𝑢W  are 
calculated as 

 
𝐿𝑅(𝑔8) = [𝐿𝑅(𝑥8)]8VP(ij⨁il) × 𝐿𝑅(𝑥P)	 

 
								𝐿𝑅(𝑔P) = [𝐿𝑅(𝑥T)]8VPil × 𝐿𝑅(𝑥W)			 

 
	𝐿𝑅(𝑢W) = [𝐿𝑅(𝑔8)]8VPim × 𝐿𝑅(𝑔P). 

 
When the tree structure in Figure 7 is inspected, we see that 
𝑢P  appears more in node likelihood calculations than the 
other data bits. In fact, we can generalize this as follows. The 
even indexed data bits appear more in number than the odd 
indexed data bits in node likelihood calculations. For 
instance, the distribution of the even and odd indexed 
previously decoded data bits to the nodes of the decoding 
three for the decoding of current bit is depicted in Figure 8 
where it is seen that even indexed data bits appear in node 
labels more than the odd indexed data bits. 

 
 
Figure 8 Decoding tree for 𝑁 = 8. 

2.2. Successive Cancellation (SC) Decoding of Polar 
Codes 

The encoder maps the input bits 𝒖𝟏𝑵 into the code-word bits 
𝒙𝟏𝑵  , which are transmitted through the split channels 
𝑾𝑵

𝒊 , 𝟏 ≤ 𝒊 ≤ 𝑵, and 𝒚𝟏𝑵 is the received signal. The task of 
the decoder is to estimate information bits 𝒖w𝟏𝑵  from the 

received signal 𝒚𝟏𝑵. The duty of the decoder is to estimate the 
data bits according to 

𝑢\x ≜ y
𝑢x,																		𝑖𝑓	𝑖 ∈ 	𝐴>	

ℎx_𝑦89, 𝑢8xV8`, 𝑖𝑓	𝑖	 ∈ 𝐴											 
 

(7) 

where ℎx(𝑦89, 𝑢\8xV8) is decision function defined as: 

ℎx_𝑦89, 𝑢\8xV8` ≜ ~0, 𝑖𝑓	
𝑊9

(x)_𝑦89, 𝑢\8xV8�0`
𝑊9

(x)_𝑦89, 𝑢\8xV8�1`
≥ 1.		

	1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.																									
 

 

(8) 

In (8), the rational term can be defined as 

𝐿9
(x)_𝑦89, 𝑢\8xV8` ≜

𝑊9
(x)_𝑦89, 𝑢\8xV8�0`

𝑊9
(x)_𝑦89, 𝑢\8xV8�1`

 
 

(9) 

which is named as likelihood ratio (𝐿𝑅) [1], [4], [6]. The 𝐿𝑅𝑠 

can be recursively computed using  

 

𝐿9
(PxV8)_𝑦89, 𝑢\8PxVP` = 

𝐿9/P
(x) _𝑦8

9/P, 𝑢\8,�PxVP⨁𝑢\8,�PxVP`𝐿9/P
(x) �𝑦9

P�8
9 , 𝑢\8,�PxVP� + 1

𝐿9/P
(x) _𝑦8

9/P, 𝑢\8,�PxVP⨁𝑢\8,�PxVP` + 𝐿9/P
(x) �𝑦9

P�8
9 , 𝑢\8,�PxVP�

 

 

(10) 

and 

𝐿9
(Px)_𝑦89, 𝑢\8PxV8`

= 𝐿9/P
(x) _𝑦8

9/P, 𝑢\8,�PxVP⨁𝑢\8,�PxVP`
8VPiwl��j𝐿9/P

(x) _𝑦9/P�89 , 𝑢\8,�PxVP`  

 

(11) 

The formulas (10)-(11) are run for the decoding of every 
information bit, and as it is seen from the exponential part of 
(11), for the decoding of the current bit, we use the decision 
result of the previous decoding stage. If the previously 
decoded bit value is wrong, then this wrong information is 
used by the stages where successor bits are decoded.   

Besides, when the formulas (10) and (11) are inspected, we 
see that the even indexed data bits appear more frequently in 
these formulas than the odd indexed data bits. For instance, in 
(10)  even indexed data bits appear 4  times whereas odd 
indexed data bits appear 2  times. Similarly, in (11)  even 
indexed data bits appear 2 times whereas odd indexed data 
bits appears once. This gives us an intuition that even indexed 
data bits may have more effect on the code performance. 

3. Error propagation 
Erroneous bit decisions in SC decoding may happen due to 
two factors, one is the channel noise and the other is the error 
propagation due to previous erroneous bit decisions. 
However, for the decoding of the first information bit, only 
channel and noise effects take role on the wrong decision. 

 

3.1. Effect of Error propagation 
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In order to examine the effect of error propagation on the 
performance of polar codes under successive cancellation 
decoder over a BEC, we artificially introduced single and 
double bit errors and inspect the performance of the decoder 
considering the decoding of all the other bits.  

We examine error propagation in SC decoding in two ways. 
In the first approach, we consider the effect of single bit error 
location on the code performance.  

In the second approach, we introduce single bit errors for the 
information bits having odd indices, such as 
(𝑢\8, 𝑢\T, 𝑢\�, … . . , 𝑢\9V8) or introduce single bit errors for the 
information bits having even indices such as 
(𝑢\P, 𝑢\W, 𝑢\�, … . . , 𝑢\9)  and examine its effect on the code 
performance. We repeated this procedure for the case of 
double bit errors. Besides, we also inspected the effect of 
single bit errors on the performance of SC list decoding of 
polar codes. 

4. Simulation Results 
In Figure 9A, simulation results for the effect of error 
propagation considering the location of single error on the 
performance of polar codes under successive cancellation 
decoder at block length 210 over a BEC with erasure 
probability zero and rate 0.5 are shown. It is clear from Figure 
9A that as the location number gets smaller values, the 
degrading effect of the error propagation becomes more 
serious. 

In Figure 9B, we compare the effect of error propagation 
considering the location number falling into odd or even 
numbers. It is clear from Figure 9B that single bit errors 
occurring in even locations have more degrading effect on the 
code performance.  

 

(A) 

 
 

(B) 

Figure 9 (A)The effect of error propagation on performance 
of polar codes under SC decoder at block length 210 over a 
BEC with erasure probability  zero  and rate 0.5. First error 
location is the index of the data for which wrong decision is 
made for the first time. Small error locations have more 
degrading effect. (B) The effect of first error location on 
performance of polar codes under SC decoder at block length 
210 over a BEC with erasure probability  zero  and rate 0.5. 
Even locations have more degrading effects. 
 
We also considered the effects of double errors. The double 
error locations are chosen in a such a way that the one location 
is the successor of the other, for instance, two even locations 
can be selected as 400 and 4002, and two odd locations can 
be selected as 401 and 403. In Figure 10, the effects of double 
errors on even locations only, on odd locations only, and one-
bit error on even and one-bit error on location are considered. 
It is clear from Figure 10 that double errors at even locations 
have the most degrading effect, and double errors at odd 
locations have less degrading effect on the code performance. 
 

 
Figure 10 The effects of double errors on even locations only, 
on odd locations only, and one at even and one at odd 
locations. 
 
In Figure 11, we compare the effects of single and double 
errors at even and odd locations. It is clear from Figure 10 that 
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the occurrence of a single error at an odd location almost has 
the same effect as the occurrence of double errors at odd 
locations. However, this is not the case for errors occurring at 
even locations. Double errors occurring at even locations 
have more degrading effect than a single error occurring at an 
even location. 
 

 
Figure 11 Comparison of the effects of single and double 
errors on even and odd locations.  
 
 
We also inspected the effects of error propagation for SC list 
decoding of polar codes. The simulation results are depicted 
in Figure 12 where it is clear that for SC list decoders, errors 
occurring at even locations have more degrading effects than 
the errors occurring at odd locations. 

 
(C) 

 
Figure 12 Single error propagation in SCL, 𝑅𝑎𝑡𝑒	 = 	0.5 , 
𝑁 = 	64. 

5. Conclusion 
In this paper, we inspected the effect of error propagation on 
the performance of SC and SC list decoding of polar codes. 
The results demonstrate that, the performances of SC and SC 
list decoding depend on the locations of the bit errors, and 
error locations with low indices have more degrading effect. 
This is due to the propagation of the error; since more 
successors bits are affected, worse performance is obtained. 

Besides, the single or double bit errors occurring in even 
locations have more degrading effect on the code 
performance compared to the bit single and double bit errors 
at odd locations. Besides, single and double bit errors 
occurring on the odd locations almost have the same 
degrading effect on SC decoder's performance.  
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