Enhanced Nonlinear Effects in Metamaterials and Plasmonics

Main Article Content

C. Argyropoulos P.-Y. Chen A. Alù

Abstract

In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

| Abstract  : 528 | PDF  : 68 |

Download Statistics

Downloads

Download data is not yet available.

Article Details

How to Cite
Argyropoulos, C., Chen, P.-Y., & Alù, A. (2012, July 5). Enhanced Nonlinear Effects in Metamaterials and Plasmonics. Advanced Electromagnetics, 1(1), 46-51. https://doi.org/https://doi.org/10.7716/aem.v1i1.72
References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966, 2000.
    View Article

  2. A. Alù, N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623, 2005.
    View Article

  3. J. B. Pendry, D. Shurig, D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780, 2006.
    View Article

  4. M. G. Silveirinha, N. Engheta, “Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends using ε-Near-Zero Materials,” Phys. Rev. Lett 97, 157403, 2006.
    View Article

  5. A. Alù, N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78, 035440, 2008.
    View Article

  6. N. Fang, H. Lee, X. Zhang, “Sub–Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534, 2005.
    View Article

  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977, 2006.
    View Article

  8. B. Edwards, A. Alù, M. G. Silveirinha, N. Engheta, “Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials,” Phys. Rev. Lett. 103, 153901, 2009.
    View Article

  9. D. Rainwater, A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, A. Alù, “Experimental Verification of Three- Dimensional Plasmonic Cloaking in Free-Space,” New Journ. of Phys. 14, 013054, 2012.
    View Article

  10. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, N. Engheta, “Experimental Verification of Epsilon-Near- Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide,” Phys. Rev. Lett. 100, 033903, 2008.
    View Article

  11. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, D. R. Smith, “Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near- Zero Metamaterial at Microwave Frequencies,” Phys. Rev. Lett. 100, 023903, 2008.
    View Article

  12. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735, 2010.
    View Article

  13. A. Bouhelier, M. Beversluis, A. Hartschuh, L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett. 90, 013903, 2008.
    View Article

  14. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582, 2010.
    View Article

  15. P.-Y. Chen, A., Alù, “Optical nanoantenna arrays loaded with nonlinear materials,” Phys. Rev. B 82, 235405, 2010.
    View Article

  16. J. A. Porto, L. Martín-Moreno, F. J. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R), 2004.
    View Article

  17. G. D’Aguanno, D. Ceglia, N. Mattiucci, M. J. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984, 2011.
    View Article

  18. M. Ren, B. Jia, J.-Y. Ou, E. Plum, J. Zhang, K. F. MacDonald, A. E. Nikolaenko, J. Xu, M. Gu, N. I. Zheludev, “Nanostructured Plasmonic Medium for Terahertz Bandwidth All-Optical Switching,” Adv. Mater. 23, 5540, 2011.
    View Article

  19. F. J. García-Vidal, E. Moreno, J. A. Porto, L. Martín- Moreno, “Transmission of Light through a Single Rectangular Hole,” Phys. Rev. Lett. 95, 103901, 2005.
    View Article

  20. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, A. Alù, “Boosting Optical Nonlinearities in ε- Near-Zero Plasmonic Channels,” Phys. Rev. B 85, 045129, 2012.
    View Article

  21. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370, 1972.
    View Article

  22. A. Alù, N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23, 571, 2006.
    View Article

  23. Q. Xu, R. M. Rioux, M. D. Dickey, G. M. Whitesides, “Nanoskiving: A New Method To Produce Arrays of Nanostructures,” Acc. Chem. Res. 41, 1566, 2008.
    View Article

  24. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681, 1946.