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ABSTRACT Global minimality, boundedness, and uniqueness are established for a general, physically
motivated class of inverse source problems in non-homogeneous electromagnetic media with generalized
constitutive parameters. The existence of a solution was addressed earlier. The radiating source, represented
by the current density, was reconstructed earlier by minimizing its L2-norm constrained to produce a
prescribed radiated field while ensuring vanishing reactive power. Using the L2-norm allows for an
analytically tractable measure of the physical resources of the source, while the reactive power constraint
maximizes transmitted power. Numerical study suggests that sources within active metamaterial substrates
can have remarkable tuning behaviors. Tuning stability can be achieved along specific permittivity and
permeability curves on zero-reactive power plots. Each permittivity or permeability value can correspond
to a discrete set of dual parameter values that enable effective tuning. The tuning characteristics observed
suggest that double-positive (DPS) and double-negative (DNG) substrates are more favorable for tuning
than single-negative (SNG) materials, possibly due to interactions dominant in DPS and DNG media.
These results fill an analytical gap in the solution of a problem that is both intriguing and challenging due
to its general formulation, which requires minimizing an objective functional with nonconvex functional
constraints on an unbounded domain. They also offer numerical insights that may have implications for the
design and optimization of sources in complex media, which is a topic of significant current interest.

INDEX TERMS global minimality, inverse problems, metamaterials, reactive power.

I. INTRODUCTION

HOW does extending the domain of physical parameters
that influence wave propagation in a medium affect

wave behavior? Which extensions remain consistent with
physical laws, and how can these generalized parameters
be practically realized? These questions, and related others,
have been intermittently explored during the 20th century
[1]–[3], but saw a resurgence of interest around the early
21st century with the discovery of “metamaterials” [4]–
[6]. Metamaterials are artificial, composite structures that
exhibit effective wave-propagation properties unattainable in
naturally occurring materials. The study of metamaterials has
evolved into a vibrant interdisciplinary field encompassing
areas such as nanophysics, electromagnetics, electromechan-
ics, and applied mathematics. Much is to be done to explore
what is theoretically possible and practically achievable.

Several types of metamaterials have been identified in-
cluding electromagnetic [7], mechanical [8], and quantum
metamaterials [9], each associated with a range of exotic
phenomena. For instance, electromagnetic and mechanical
metamaterials open up possibilities such as cloaking [10],
[11], sub-wavelength imaging [12], [13], enhanced or sup-
pressed radiation and scattering [14], [15]. Metamaterials
are poised to revolutionize fields as diverse as telecommu-

nication, remote sensing, medical imaging, photonics, photo-
voltaics, geophysical exploration, and nanofabrication.

Our focus here in on electromagnetic metamaterials, dis-
tinguished by their generalized electric permittivity ϵ and
magnetic permeability µ. These constitutive parameters are
not only complex but can also have real parts that are
simultaneously negative, imbuing the equations with both
mathematical and physical richness [7]. This results in wave
behavior absent in conventional media including left-handed
propagation, negative refraction [16], reversed Cherenkov
effect [17], and the inverse Doppler effect [18]. All of these
phenomena have been experimentally observed.

Two complementary methodologies guide the study of
metamaterials: (1) a direct approach, where predefined, typ-
ically achievable metamaterial properties are assumed and
their effects on wave propagation is investigated, and (2)
an inverse-theoretic approach, which begins with a desired
wave-metamaterial interaction. In the inverse-theoretic ap-
proach, constrained optimization is employed to derive the
metamaterial’s properties—geometry, dispersion relations, or
constitutive parameters—that can achieve the desired interac-
tion if they are physically plausible. The inverse-theoretic ap-
proach holds particular appeal in theoretical studies because
its solutions encompass the broader set of physically conceiv-
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able designs, rather than the narrower subset of practically
achievable ones. This approach continues to drive research
in electromagnetic and elastic inverse problems across math-
ematics [19]–[27], physics [28]–[32], and engineering [33]–
[36] communities.

In [37] the authors explored the analytical solution of a
general, inverse electromagnetic-radiation problem: recon-
structing a source (i.e., current density) embedded in non-
homogeneous media with generalized constitutive parame-
ters, radiating a prescribed exterior field. This reconstruction
involved minimizing the “source energy” of the current den-
sity, subject to a vanishing reactive power condition. “Source
energy” refers to the L2-norm of the current density, a metric
used not to measure actual energy but for analytical tractabil-
ity and as a proxy for minimizing the source’s physical
resources, since the L2-norm essentially reflects the physical
energy. Reactive power in this context refers to the cycling
power between the inductive and capacitive elements of the
source, and minimizing it maximizes the power transmitted
to the far-field. The problem is both intriguing and challeng-
ing due to its general formulation, which requires minimizing
an objective functional with nonconvex functional constraints
on an unbounded domain. The authors have already answered
the initial question concerning the existence of a tuned (i.e.,
zero-reactive-power) minimal source. However, they have
not addressed its boundedness, minimality, or uniqueness.

This paper revisits this problem to address these gaps,
establishing the lower boundedness, global minimality, and
uniqueness of the tuned minimal source. It also presents a
numerical study to give an intuitive understanding of the
properties of this source in a few typical cases.

II. PRELIMINARIES
For the sake of completeness, we give in this section a sum-
mary of the essential definitions, explicit forms, and proof of
existence of the tuned minimal sources. For details, the reader
is referred to [37]. The new results of this paper, namely, the
lower boundedness, global minimality, and uniqueness of the
tuned minimal sources are presented in section III.

A. RADIATING SOURCE
The electromagnetic source to be reconstructed is assumed
to be embedded in a substrate with volume V := {r ∈
R3 : r := ∥r∥ ≤ a < ∞}. The electric permittivity and
magnetic permeability distributions are of the form f(r) =
fθ(a − r) + f0θ(r − a), where f = ϵ, µ, stands for the
permittivity and the permeability, respectively; subscript 0
refers to the vacuum; and θ denotes the Heaviside unit step.
For a lossless substrate (ϵ, µ) ∈ R2 and, thus, the radiation
propagation constant k := ω

√
ϵ
√
µ ∈ C with ℜ[k]ℑ[k] = 0,

where ω is the radiation frequency, and ℜ and ℑ stand
for the real and imaginary parts, respectively. The generally
frequency-dependent constitutive parameters are taken at a
given central frequency. Given that k0 := ω

√
ϵ0
√
µ0 is the

propagation constant in vacuum, one identifies the following
cases: (i) k > k0 for ordinary materials, (ii) 0 < k < k0

for double-positive (DPS) metamaterials, (iii) k < 0 for
double-negative (DNG) metamaterials, (iv) k ∈ C for single-
negative (SNG) (meta)materials, and (v) k = 0 for nihility
metamaterials. This widely used, convenient classification is
certainly unrealistic for passive media. Indeed, for such me-
dia to exhibit a causal response to electromagnetic excitation
their constitutive parameters must be complex functions of
the radiation frequency that satisfy the classical Kramers-
Kronig relations [38]. These relations show that the real and
imaginary parts of the constitutive parameters are Hilbert
transforms of each other and so none of them can vanish
identically. It is possible for active metamaterials, however,
to be causal without satisfying these relations [39], [40].
Thus, the above classification is not unrealistic for this type
of media. Active metamaterials attract considerable interest
due to their potential applications [41]–[44].

B. RADIATED FIELDS

A time-harmonic, electric-current volume density J(r, t) ∈
L2

(
V ;C3

)
(herein referred to simply as “the source”), gen-

erates an electric field E(r, t). Outside V , the electric field
E(r) may be expressed as a multipole expansion, namely

E(r) =
∑
l,m

∇× [h
(+)
l (k0r)Yl,m(r̂)] a

(1)
l,m

+ ik0h
(+)
l (k0r)Yl,m(r̂) a

(2)
l,m, r /∈ V, (1)

where a
(j)
l,m ∈ C are the multipole moments of the radiated

field, r̂ := r/r, h(+)
l denotes the spherical Hankel function of

the first kind and order l, corresponding to outgoing spherical
waves in the far zone, Yl,m is the vector spherical harmonic
of degree l and order m, and j = 1 and j = 2 correspond
to electric and magnetic multipole fields, respectively. The
index l ∈ N∗ is sometimes referred to as the multipole order
of the field; m = −l,−l + 1, ..., 0, ..., l − 1, l. Practically,
though, the multipole expansion in (1) is truncated at the
multipole order lmax. That is because fields that differ by
less than a prescribed error are essentially indistinguishable.
The value of lmax is determined by the spatial extent of the
source and the maximum spatial frequency components, and
is related to the degrees of freedom of the radiated field,
which is equal to the Nyquist number [45]–[47]. It has been
shown that an empirical value of lmax which yields very good
results is given by lmax ≈ ka + 1.8 d2/3(ka)1/3, where d is
the number of digits of accuracy [48]. Sometimes it suffices
to take lmax ≈ ka. In fact, the spherical Bessel functions
reach their maximum amplitudes when their argument is
approximately equal to their order and for large orders the
maximum is sharply peaked then. The multipole moments
a
(j)
l,m are uniquely determined by the projections of E(r) onto

a sphere of radius R > a. One finds that the multipole
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moments are given by

a
(j)
l,m =


[il(l + 1)k0h

(+)
l (k0R)]−1

∫
Ω
Yl,m(r̂) ·E(Rr̂)dr̂;

j = 1
[l(l + 1)k0vl(k0R)]−1

∫
Ω
r̂×Yl,m ·E(Rr̂)dr̂;

j = 2,
(2)

where the overline denotes the complex conjugate.

C. RADIATED FIELD PRESCRIPTION CONDITION
The source radiates a prescribed field outside V . The pre-
scription condition is expressed as a

(j)
l,m = (B

(j)
l,m,J). For

piecewise-constant, radially-symmetric propagation media
with constitutive parameters given by f(r) we obtain

B
(j)
l,m :=

 −η0

l(l+1)F
(1)

l (x0, x)∇×
[
jl(kr)Yl,m

]
; j = 1

−ik0η0

l(l+1) F
(2)

l (x0, x)jl(kr)Yl,m(r̂); j = 2,

(3)
where jl is the spherical Bessel function of the first kind
and order l, and x0 and x are defined as x0 := k0a :=

ω
√
ϵ0µ0a = 2π a

λ0
, and x := ka := ω

√
ϵ
√
µa :=

x
√
ϵr
√
µr = 2π a

λ . The relative electric permittivity and
magnetic permeability are ϵr := ϵϵ−1

0 and µr := µµ−1
0 ,

respectively, and λ is the wavelength. Explicit expressions
for the complex Mie amplitudes F (1)

l (x0, x) and F
(2)
l (x0, x)

are given in Appendix A.

D. THE CONSTRAINED MINIMIZATION PROBLEM
Let E be the “source energy” defined as the L2-norm of the
current density, i.e.,

E := ⟨J,J⟩ :=
∫

|J(r)|2 dr, (4)

and let ℑ[P] be the reactive power defined as

ℑ[P] := ℑ[−1

2
(J(r),

∫
dr′G(r, r′) · J(r′))], (5)

where ℑ stands for the imaginary part and G(r, r′) is
the dyadic Green’s function. For a radiating spherical
source embedded in vacuum, G(r, r′) can be expressed as

G(r, r′) =
∑
l,m

−η0
µrl (l + 1)

{
F

(2)
l

[
k2jl(kr<)Yl,m(r̂<)

] [
h
(+)
l (k0r>)Yl,m(r̂>)

]
+ F

(1)
l ∇× [jl(kr<)Yl,m(r̂<)]∇×

[
h
(+)
l (k0r>)Yl,m(r̂>)

]}
. (6)

The < (>) subscript designates the smaller (larger) of r
and r′.

The problem under consideration is

min
J∈X

⟨J,J⟩ , (7)

X :=
{
J ∈ L2

(
V ;C3

)
:
〈
B

(j)
l,m,J

〉
= a

(j)
l,m, ℑ [P] = 0

}
.

(8)

This corresponds to the problem of reconstructing a radiating
electromagnetic source embedded in a non-homogeneous
background with generalized constitutive parameters by min-
imizing its L2-norm subject to a prescribed radiated field
and a vanishing reactive power. As indicated earlier, the
minimization of the source’s L2-norm constitutes a useful
criterion for the minimization of the actual physical resources
of the radiating source. In addition, requiring the vanishing
of the reactive power is desirable in radiating systems as it
corresponds to the vanishing of the “useless” power.

E. EXISTENCE OF SOLUTIONS

Theorems 1 and 2 establish the existence of a solution to
the constrained optimization problem (herein referred to as
problem (7,8)).

Theorem 1. Problem (7,8) is equivalent to the auxiliary
problem

min
J∈X∩BΓ(J0)

E (J) , (9)

BΓ (J0) =
{
J ∈ L2

(
V ;C3

)
: ∥J− J0∥ ≤ Γ

}
. (10)

Proof. Since X is a closed (unbounded, and nonconvex)
subset of a normed vector space and since E is a coercive
functional, then there exist J0 ∈ X and Γ > 0 such that

inf
J∈X

E (J) = inf
{

E (J) : J ∈ X ∩BΓ (J0)
}
. (11)

Theorem 2. There exists a solution to the auxiliary prob-
lem (9,10).

Proof. Given that

1) E is a weakly sequentially lower semi-continuous
functional, and

2) X ∩ BΓ (J0) is a weakly sequentially compact subset
of a Hilbert space

there exists, by virtue of the generalized Weierstrass theorem,
at least one solution to problem (9,10). Consequently, there
exists at least one solution to problem (7,8).
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F. EXPLICIT FORM OF SOLUTIONS
Let JE ,P be a minimizer. Using the Lagrange multiplier
method, it can be shown that

JE ,P(r) =
∑
j,l,m

a
(j)
l,m〈

B
(j)
l,m,D

(j)
l,m

〉D
(j)
l,m(r), (12)

where

D
(j)
l,m(r) =

{
− η0

l(l+1)∇× [jl(Kχr)Yl,m] ; j = 1

− iη0K
l(l+1)jl(Kχr)Yl,m(r̂) ; j = 2,

(13)
and

〈
B

(j)
l,m,D

(j)
l,m

〉
=



η20F
(1)
l

∫ a

0
dr
[
jl(kr)jl(Kχr)

+
kKχr

2

l(l+1) ul (kr)ul (Kχr)
]
; j = 1

η20F
(2)
l

k0Kχ

l(l+1)

∫ a

0
drr2jl(kr)jl(Kχr);

j = 2.
(14)

Radial functions ul are defined in Appendix A. The quantity
Kχ =

√
k2 − χµω, where χ ∈ R is the Lagrange multiplier,

is a modified propagation constant which appears in the wave
equation ∇×∇×JE ,P(r)−K2

χJE ,P(r) = 0. This equation
governs the spatiotempral variation of the source’s optimized
current distribution. It is obtained with the assumption that
k2 ∈ R. This condition is satisfied by DPS, DNG, SNG, and
nihility media. To have a time-harmonic current distribution
transmitting a time-harmonic electromagnetic field through
the source’s substrate, we need to have K2

χ > 0.
It can also be shown that the minimum energy of the tuned

source is given by

EE ,P =
∑
j,l,m

T
(j)
l,m |a(j)l,m|2, (15)

where

T
(j)
l,m :=

〈
D

(j)
l,m,D

(j)
l,m

〉
〈
B

(j)
l,m,D

(j)
l,m

〉2 (16)

and

〈
D

(j)
l,m,D

(j)
l,m

〉
=


η20

∫ a

0

[
|jl(Kχr)|2 + |Kχ r ul(Kχr)|2

l(l+1)

]
dr;

j = 1
η2
0 |Kχ|2
l(l+1)

∫ a

0
|rjl(Kχr)|2 dr; j = 2.

(17)

In terms of the field multipole moments, the explicit expres-
sion of the complex interaction power reads

P =
∑
j,l,m

i

2χ


〈
D

(j)
l,m,D

(j)
l,m

〉
∣∣∣〈B

(j)
l,m,D

(j)
l,m

〉∣∣∣2 + γ
(j)
l,m

 |a(j)l,m|2, (18)

while the reactive power is given by

ℑ [P] =
∑
j,l,m

1

2χ


〈
D

(j)
l,m,D

(j)
l,m

〉
∣∣∣〈B

(j)
l,m,D

(j)
l,m

〉∣∣∣2 + ℜ
[
γ
(j)
l,m

] |a(j)l,m|2,

(19)
where

γ
(j)
l,m =



[
F

(1)
l k ul(ka)

]−1

×
[
−ik0

η0
χl(l + 1)vl(k0a)− Kχul(Kχa)〈

B
(1)
l,m,D

(1)
l,m

〉] ;
j = 1

[
F

(2)
l k0jl(ka)

]−1

×
[
−ik0

η0
χl(l + 1)h

(+)
l (k0a)− Kχjl(Kχa)〈

B
(2)
l,m,D

(2)
l,m

〉] ;
j = 2.

(20)

III. RESULTS
In this section, we establish the new results of this pa-
per, namely, the lower boundedness, global minimality, and
uniqueness of the tuned minimal source. We also present
a numerical study to give an intuitive understanding of the
properties of this source in a few typical cases.

A. BOUNDEDNESS
Theorem 3. The untuned minimum source energy EE is a
lower bound on the tuned minimum source energy EE ,P for
source substrates with generalized constitutive parameters
(ϵ, µ) ∈ R2.

Proof. The necessary and sufficient condition for EE to be a
unique lower bound on EE ,P may be expressed as

EE ≤ EE ,P . (21)

Substituting the expressions of EE and EE ,P from (15) yields

∑
j,l,m

(
T

(j)
l,m

∣∣∣
χ
− T

(j)
l,m

∣∣∣
0

) ∣∣∣a(j)l,m

∣∣∣2 ≥ 0. (22)

A sufficient condition for this to hold is that

T
(j)
l,m

∣∣∣
χ
− T

(j)
l,m

∣∣∣
0
≥ 0, ∀j, l,m. (23)

Substituting the explicit expression for T
(j)
l,m (from

(16), (14), and (17)) yields the following conditions



[∫ a

0

(
|jl(kr)|2 + |k r ul(kr)|2

l(l+1)

)
dr
] [∫ a

0

(
|jl(Kχr)|2 + |Kχ r ul(Kχr)|2

l(l+1)

)
dr
]

≥
∣∣∣∫ a

0

(
jl(kr)jl(Kχr) +

kKχ r2 ul(kr)ul(Kχr)
l(l+1)

)
dr
∣∣∣2 ; j = 1 (24a)

[∫ a

0
|r jl(kr)|2 dr

] [∫ a

0
|r jl(Kχr)|2 dr

]
≥

∣∣∫ a

0
jl(kr) jl(Kχr) r

2dr
∣∣2 ; j = 2 (24b)
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Inequality (24b) is satisfied by virtue of the Cauchy-
Schwarz theorem, since the integrals are finite Lommel in-
tegrals (See equations (49a) and (49b)). As for (24a), it is
more instructive to use its original form, namely,[∫

Ω

dr̂

∫ a

0

|∇× [jl(kr)Yl,m]|2 dr
]

×
[∫

Ω

dr̂

∫ a

0

|∇× [jl(Kχr)Yl,m]|2 dr
]

≥
∣∣∣∣∫

Ω

dr̂

∫ a

0

∇× [jl(kr)Yl,m] ·∇× [jl(Kχr)Yl,m] dr

∣∣∣∣2 .
(25)

This expression clearly shows that we have another inequal-
ity of the Cauchy-Schwarz type provided that∫

Ω

dr̂

∫ a

0

|∇× [jl(αr)Yl,m]|2 < ∞. (26)

For this square-integrability criterion to be satisfied, it is
sufficient to show that the spherical Bessel functions jl and
their combinations (r ul) are square-integrable, that is,∫ a

0

|jl(αr)|2 dr < ∞ (27)

and ∫ a

0

|r ul(αr)|2 dr < ∞. (28)

These conditions involve definite integrals of the form∫ a

0

rsjl(αr)jl′(α
′r)dr (29)

where l, l
′ ∈ N∗, α, α′ ∈ C, and s = 0, 2 (see Ap-

pendix B). Closed-form expressions are not necessary to
establish (27) and (28). These conditions simply result from
the fundamental theorem of calculus for complex functions,
since the integrand in (29) is the product of entire functions,
i.e., complex-valued functions that are holomorphic, and thus
continuous, on the whole complex plane [49]. Other useful
properties of the integrand are discussed in Appendix B.

The equality in (24a), (24b), and (25) holds if and only
if jl(kr) = jl(Kχr), i.e., when 0 ∈ Ξ, where Ξ :=
{χ ∈ R : ℑ [P] = 0}, i.e, it is the set of all the Lagrange
multipliers that satisfy the tuning constraint.

B. GLOBAL MINIMALITY AND UNIQUENESS
Let χ0 ∈ Ξ be the element that satisfies

|χ0| = inf
χ∈Ξ

{|χ|} . (30)

Corollary 1. When the unique lower bound EE belongs to
the set of tuned minimum source energies EE ,P |χ, it is also
the unique global minimum.

Proof. This corollary follows directly from the lower-
boundedness of EE (Theorem 3).

Theorem 4. The tuned minimum source energy EE ,P |χ0
is

the unique global minimum on the tuned minimum energy

EE ,P for source substrates with generalized constitutive
parameters (ϵ, µ) ∈ R2 and for which the tuned source is
a “perturbation” of the untuned source.

Proof. The necessary and sufficient condition for EE ,P |χ0

to be a unique global minimum on EE ,P may be expressed
as

EE ,P |χ0
< EE ,P |χ . (31)

To establish (31) we expand EE ,P |χ in formal Taylor series
about χ = 0. The series expansion yields

EE ,P |χ = c0 + c1χ+ c2χ
2 +O[χ3], (32)

where

ck :=
1

k!

∂kEE ,P

∂χk

∣∣∣∣
0

=
1

k!

∑
j,l,m

∂kT
(j)
l,m

∂χk

∣∣∣∣∣
0

∣∣∣a(j)l,m

∣∣∣2 , k = 0, 1, 2.

(33)
where, in the last step, we have used (15). The higher-order
terms O

(
χ3

)
, i.e., the remainder of the expansion, can be

expressed in the Lagrange form as

O
(
χ3

)
=

1

3!

∂3EE ,P

∂χ3

∣∣∣∣
ξ

χ3, (34)

where ξ is between 0 and χ. Due to the intricate form of the
third derivative, no attempt will be made here to discuss the
boundedness of O

(
χ3

)
. In what follows, we shall assume

that it is negligible compared to the main term of the series.
Systems for which this would be a valid assumption are
systems for which the tuned source is a “perturbation” (in this
sense) of the untuned source. This hypothesis is supported by
the numerical study in [37]. Now, EE ,P |0 is a lower bound
on EE ,P |χ (theorem 3). It follows that χ = 0 is a local
minimum of EE ,P |χ with respect to χ. Therefore,

∂EE ,P

∂χ

∣∣∣∣
0

= 0 ⇔ c1 = 0 (35)

and
∂2EE ,P

∂χ2

∣∣∣∣
0

≥ 0 ⇔ c2 ≥ 0, (36)

which establishes (31).

C. DISCUSSION
In this section we briefly discuss the properties of a few
typical solutions of the problem. In Fig. 1, contour plots of
ℑ [P] = 0 are shown for sources with electrical sizes k0a =
π/4, π/2, π, and 2π. The plots illustrate the conditions on
permittivity and permeability under which the reactive power
vanishes. Several general features are immediately apparent.
First, as the electrical size of the source decreases—that is,
as the ratio of the physical source size to the wavelength of
emitted radiation becomes smaller—the range of permittivity
and permeability values that yield zero reactive power also
narrows. This is in line with the established fact that tuning
and impedance matching electrically large antennas is easier
due to their reduced reactive components. Second, for an
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 

(a) k0a = π/4

 

(b) k0a = π/2

 

(c) k0a = π

 

(d) k0a = 2π

FIGURE 1: Contour plots of ℑ [P] = 0 for various values of k0a.

active metamaterial substrate, the source tuning could remain
stable during operation if the substrate’s permittivity and
permeability values vary along specific curves within the
reactive power plot. Also, for any given permittivity (or
permeability), there exists a discrete, potentially large set of
permeability (or permittivity) values that allow for effective
source tuning. Lastly, the observed tuning behavior seems to
favor DPS and DNG substrates over SNG substrates. If this
feature persists in a more realistic treatment where, among
other things, the L2-norm of the current density—commonly
referred to as “source energy”—is replaced by the mini-
mization of the actual energy, then one might speculate that
an interplay of physical phenomena strongest in DPS and
DNG materials is responsible for this effect. These include
photonic band gaps, backward wave propagation, and elec-
tromagnetically induced transparency. In contrast, plasmon-
polariton interactions—most pronounced in epsilon-negative
(ENG) materials—and magnetic surface polaritons—most
pronounced in mu-negative (MNG) materials—are likely to
play a minor role. The numerical study shows, though, that
the zero-reactive power curves can extend into the second
quadrant of the plots (where ϵ < 0) rather than the fourth

(where µ < 0).

IV. CONCLUSION

This work has established global minimality and unique-
ness for electromagnetic inverse source problems in com-
plex, non-homogeneous media with generalized constitutive
parameters. The initial question concerning the existence
of a solution was answered in [37]. The current density
was reconstructed by minimizing its L2-norm subject to a
prescribed radiated field and a vanishing reactive power.
The problem is both intriguing and challenging due to its
general formulation, which requires minimizing an objec-
tive functional with nonconvex functional constraints on an
unbounded domain. Numerical study reveals that for active
metamaterial substrates, tuning could be maintained as per-
mittivity and permeability vary along specific zero-reactive
power curves. Also, for any given permittivity (or perme-
ability), a range of corresponding dual parameters allows
effective tuning. The observed tuning behavior appears to
favor DPS and DNG substrates over SNG substrates, po-
tentially due to dominant phenomena such as photonic band
gaps, backward wave propagation, and electromagnetically
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induced transparency. Conversely, plasmon-polariton inter-
actions—most pronounced in epsilon-negative (ENG) ma-
terials—and magnetic surface polaritons—most pronounced
in mu-negative (MNG) materials—appear to have limited
impact. This work fills an analytical gap by confirming
boundedness, minimality, and uniqueness and provides in-
sights into the practical tuning behavior of sources within
metamaterials.
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APPENDIX. A: MIE AMPLITUDES F
(1)
L (X0, X) AND

F
(2)
L (X0, X)

The complex Mie amplitudes F
(1)
l (x0, x) and F

(2)
l (x0, x)

introduced in (3) are given by

F
(1)
l (x0, x) :=

√
µr

x0x

{
[
√
ϵrjl (x)wl (x0)−

√
µrul (x) yl (x0)]

+ i [
√
ϵrjl (x)ul (x0)−

√
µrul (x) jl (x0)]

}
×
{
[
√
ϵrjl (x)wl (x0)−

√
µrul (x) yl (x0)]

2

+ [
√
ϵrjl (x)ul (x0)−

√
µrul (x) jl (x0)]

2

}−1

,

(37)

and

F
(2)
l (x0, x) :=

µr
√
ϵr

x0x

{
[
√
µrjl (x)wl (x0)−

√
ϵrul (x) yl (x0)]

+ i [
√
µrjl (x)ul (x0)−

√
ϵrul (x) jl (x0)]

}
×
{
[
√
µrjl (x)wl (x0)−

√
ϵrul (x) yl (x0)]

2

+ [
√
µrjl (x)ul (x0)−

√
ϵrul (x) jl (x0)]

2

}−1

,

(38)

where the radial functions ul, wl, and vl are defined as

ul(x) :=
djl(x)

dx
+

jl(x)

x

=
1

2l + 1
[(l + 1)jl−1(x)− ljl+1(x)], (39)

wl(x) :=
dyl(x)

dx
+

yl(x)

x

=
1

2l + 1
[(l + 1)yl−1(x)− lyl+1(x)], (40)

vl(x) :=
dh

(+)
l (x)

dx
+

h
(+)
l (x)

x
= ul(x) + iwl(x) (41)

and where yl, h
(+)
l are the spherical Neumann and Hankel

functions of order l, respectively.

The spherical Bessel and Neumann functions are (i) con-
tinuous on the closed upper half-plane {x ∈ C | ℑ(x) ≥ 0},
(ii) holomorphic in the upper half-plane {jl(x), yl(x) ∈ C |
ℑ(x) > 0}, and (iii) real-valued when their arguments are
real. Thus, by the Schwarz reflection principle [49], they
satisfy

jl(x) = jl(x) and yl(x) = yl(x). (42)

Consequently, we also have

ul(x) = ul(x), wl(x) = wl(x), and vl(x) = vl(x).
(43)

APPENDIX. B: COMMENTS ON THE
SQUARE-INTEGRABILITY CONDITIONS
The square-integrability conditions∫ a

0

|jl(αr)|2 dr < ∞ (44)

and ∫ a

0

|r ul(αr)|2 dr < ∞, (45)

(i.e., conditions (27) and (28), respectively) are needed for
the Cauchy-Schwarz inequality (25) to hold. As noted in
section III, these conditions involve definite integrals of the
form ∫ a

0

rs jl(αr) jl′(α
′r) dr (46)

where l, l
′ ∈ N∗, α, α′ ∈ C, a ∈ R, and s = 0, 2. A

useful property of these integrals obtained from the conjugate
symmetry of the inner product and the Schwarz reflection
principle (Appendix A) is that∫ a

0

rs jl(αr) jl′(α′r) dr =

∫ a

0

rs jl(αr) jl′(α′r) dr

=

∫ a

0

rs jl(αr) jl′(α′r) dr. (47)

These transformations allow us to rewrite the integrals in
forms that come in helpful in the calculations.

The integral in (44) is recovered by setting l = l′, α′ =
α, and s = 0 in (46). Using (39), we obtain the following
explicit expression for the integral in (45)∫ a

0

|r ul(αr)|2 dr =
l2

(2l + 1)2

∫ a

0

r2jl+1(αr)jl+1(αr)dr

+
(l + 1)2

(2l + 1)2

∫ a

0

r2jl−1(αr)jl−1(αr)dr

− 2l(l + 1)

(2l + 1)2
ℜ
[∫ a

0

r2jl−1(αr)jl+1(αr)dr

]
.

(48)
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The first two terms are Lommel integrals of the forms [50]–
[53]

∫ a

0

|rjl(αr)|2 dr =



a3

2

[
jl(αa)

2

−jl+1(αa)jl−1(αa)] < ∞;α = α

(49a)
a2

α2 − α2 [αjl(αa)jl−1(αa)

−αjl(αa)jl−1(αa)] < ∞;α ̸= α (49b)

so we need not worry about them. The third term is recovered
from (46) with the substitutions l → l + 1, l′ → l − 1,
α′ → α, and s → 2. Now, the integrand in (46) is the product
of entire functions, i.e., complex-valued functions that are
holomorphic, and thus continuous, on the whole complex
plane. Hence, by the fundamental theorem of calculus for
complex functions [49], the integral in (46) is finite, which
establishes conditions (44) and (45).

It is instructive to see when the integral is real-valued.
The spherical Bessel function of the first kind with complex
argument z and nonnegative, integer order l, jl(z), can be
expressed as a power series of the form [51]

jl(z) = zl
∞∑

n=0

(−1)
n
z2n

2nn! (2l + 2n+ 1)!!
. (50)

Thus,

rsjl(αr)jl′(α
′r) = rs (αr)

l
∞∑

n=0

(−1)
n
(αr)

2n
(α′r)

l′

2nn! (2l + 2n+ 1)!!

×
∞∑

n′=0

(−1)
n′
(α′r)

2n′

2n′n′! (2l′ + 2n′ + 1)!!
(51)

which is the Cauchy product of two convergent
power series (since they represent entire functions).
By separating the n = n′ and n ̸= n′ terms,
the terms in (51) can be rearranged as follows

rsjl(αr)jl′(α
′r) = αl α′ l′rl+l′+s

{ ∞∑
n=0

[
(αα′)

n
r2n

2nn! (2l + 2n+ 1)!!

]2
+

∞∑
n=0

∞∑
n′=0
n′ ̸=n

(−1)
n+n′

ℜ
[
α2n α′ 2n′

]
r2(n+n′)

2n+n′−1n!n′! (2l + 2n+ 1)!! (2l′ + 2n′ + 1)!!

}
.

(52)

Note that l+ l′+ s ≥ 2, since, by definition l, l
′ ∈ N∗ and

s = 0, 2; thus rsjl(αr)jl′(α′r) ∈ R. Consequently,

∞∑
n=0

[
r2n

2nn! (2l + 2n+ 1)!!

]2
ℑ
[
α2n+lα′ 2n+l′

]
= 0. (53)

For the equation in (53) to hold independently of r, we need
to have

ℑ
[
α2n+lα′ 2n+l′

]
= 0, (54)

that is,

2n (argα+ argα′) + l argα+ l′ argα′ = 0 (55)

where argα, argα′ are the principal values of the arguments
of α and α′, respectively. For (55) to be independent of n,
the term in parentheses must vanish. We conclude that the
integral is real-valued if and only if argα = − argα′ and
l = l′ (two obvious cases are when α, α′ ∈ R or α′ = α).
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