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ABSTRACT A remarkable magnetic softness and giant magnetoimpedance (GMI) effect at GHz 
frequency range havebeen observed in glass-coated microwires subjected to appropriate postprocessing. 
Co-based microwires present higher GMI effect. Insulating and flexible glass-coating allows use of 
magnetically soft amorphous glass-coated microwires for stresses or temperature monitoring in smart 
composites using free space facility. Such composites with magnetic microwire inclusions can present 
tunable magnetic permittivity. We report on in-situ the evolution of the transmission and reflection 
parameters of the polymer containing magnetic microwire inclusions during the polymerization process. A 
remarkable change of the reflection and transmission in the range of 4-7 GHz upon the matrix 
polymerization is observed. Observed dependencies are discussed in terms of the effect of the temperature 
and stresses variation on magnetic properties of glass-coated microwires during the thermoset matrix 
polymerization. Obtained results are considered as a base for novel sensing technique allowing non-
destructive and non-contact monitoring of the composites utilizing ferromagnetic glass-coated microwire 
inclusions with magnetic properties sensitive to tensile stress and temperature. 

INDEX TERMS Magnetic microwires, magnetic softness, internal stresses, non-destructive control. 

I. INTRODUCTION 
apid melt quenching allows preparation of amorphous 
magnetic materials with an unusual combination of 

excellent soft magnetic properties together with good 
mechanical properties. This combination of properties 
makes them suitable for numerous industrial applications 
[1-6]. Magnetic softness of amorphous alloys is originated 
by the absence of the magnetocrystalline anisotropy and 
defects (dislocations, grain boundaries…) typical for 
crystalline magnets [1-3, 6-8].  Furthermore, the fabrication 
method involving rapid melt quenching is rather fast and 
cheap and above-mentioned magnetic softness can be 
realized without any complex post-processing treatments 
[3-5].  
The development of novel applications of amorphous 
materials requires new functionalities, i.e. reduced 
dimensions, enhanced corrosion resistance or 
biocompatibility [6,8].  Therefore, great attention has been 
paid to development of alternative fabrication methods 
allowing preparation of amorphous materials at micro-nano 
scale involving melt quenching [6-8] 

 
Glass-coated microwires prepared by the Taylor-Ulitovsky 
technique fit to most of aforementioned expectations: such 
magnetic microwires have micro-nanometric diameters 
(between 0.5 and 100 µm) covered by thin, insulating, 
biocompatible and flexible glass-coating and can present 
excellent magnetic softness or magnetic bistability [7-11]. 
These features of glass-coated microwires allow 
development of new exciting applications in various 
magnetic sensors, as well as in smart composites with 
tunable magnetic permittivity [12-19]. One more advantage 
of glass-coated microwires is their excellent mechanical 
properties [5]. 
Recently, the stress dependence of hysteresis loops and 
GMI effect are proposed for the mechanical stresses 
monitoring in fiber reinforced composites (FRC) containing 
microwires inclusions or using magnetoelastic sensors 
based on stress dependence of various magnetic properties 
[18, 20,21]. 
One of the common problems in the composite materials is 
the monitoring of the matrix polymerization as well as 
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stresses monitoring. Usually the polymerization process 
monitoring is performed by different sensors like the 
pressure transducers and dielectric sensors [22]. However, 
employed sensors are not wireless [22]. Another proposed 
solution for non-destructive FRC monitoring is use of the 
piezoelectric fibers with diameters of 10 to 100 µm [23]. 
However, this solution requires plates to supply an 
electrical field, occupying a significant amount of space. 
Among the promising solutions, addressing the problem of 
non-destructive FRC monitoring is a new sensing method 
involving free space microwave spectroscopy using 
inclusions of ferromagnetic microwire presenting the high 
frequency impedance quite sensitive to applied stress and 
magnetic field [17,18,24]. The aforementioned glass- 
coated microwires with metallic nucleus diameters of 0.2 - 
100 µm presenting excellent mechanical and corrosive 
properties, are perfectly suited for the requirements of this 
technique, making it suitable for remote stresses and 
temperature monitoring in FRCs [17,18,24,25]. Recently 
several successful attempts for non-destructive FRC 
monitoring have been reported [26]. 
Magnetic softness of glass-coated microwires is 
substantially affected by the chemical composition of 
metallic nucleus: basically better magnetic softness and 
higher GMI effect are reported for Co-rich microwires with 
vanishing magnetostriction [8]. 
Accordingly, in this paper, we present our last results on 
studies of magnetic properties of glass-coated Co-rich 
microwires and on in-situ polymerization process 
monitoring of the FRC with Co-rich glass-coated 
microwires inclusions. 

II. EXPERIMENTAL DETAILS AND SAMPLES 
We studied glass-coated Fe3.8Co65.4Ni1B13.8Si13Mo1.35C1.65 
(metallic nucleus diameter, d=18.8 µm, total diameter, 
D=22.2 µm, ρ =d/D= 0.88) microwires with vanishing 
magnetostriction coefficients, λs, produced by Taylor- 
Ulitovsky method described elsewhere [7,8,11,12]. 
Hysteresis loops of studied microwires have been measured 
using fluxmetric method previously described in details 
elsewhere [27]. We represent the hysteresis loops as the 
dependence of normalized magnetization, M/M0 (where M is 
the magnetic moment at given magnetic field and M0 is the 
magnetic moment of the sample at the maximum magnetic 
field amplitude) versus magnetic field, H. The homogeneous 
axial magnetic field is produced by long solenoid (about 1 
cm in diameter and 12 cm in length). All the measurements 
were performed at low AC magnetic field frequencies (100 
Hz). The hysteresis loops measurements of individual 
microwires upon applied tensile stress and of the 
polymerizing matrix upon polymerization was a tool to 
demonstrate soft magnetic character of studied samples and 
to check what kind of stresses appear during the matrix 
polymerization.  

The sample impedance, Z, in extended frequency range 
has been evaluated using the micro-strip sample holder 
from the reflection coefficient, S11, obtained using Vector 
Network Analyzer (VNA), as previously described [28]. 
Such micro-strip holder with sample has been placed inside 
a long solenoid producing homogeneous magnetic field, H. 
The GMI ratio, ΔZ/Z, is obtained from Z(H) dependence as: 
 DZ/Z = [Z(H) - Z(Hmax)]/Z(Hmax), (1)  
where H and Hmax are given and maximum applied fields 
respectively. 
As expected from previously published papers on Co-rich 
microwires, as-prepared Fe3.8Co65.4Ni1B13.8Si13Mo1.35C1.65 

microwires present good magnetic softness (coercivity of 
about 10 A/m), high GMI effect (GMI ratio about 100%) 
(see Fig.1) and low negative magnetostriction coefficients, λs, 
of about -01x10-6 [29].  

For the composite matrix we used a vinylester resin 
(DERAKANE 8084) resin, accelerated with Cobalt Octoate 
(0,3 pph) and catalyzed with Methyl Ethyl Ketona (MEK 
60%, 1,5 pph). DERAKANE 8084 epoxy vinyl ester resin is 
an elastomer modified resin, designed to provide increased 
adhesive strength, superior abrasion resistance and enhanced 
mechanical stress, while providing greater toughness and 
elongation. 
The liquid resin exhibits the following properties: 1.02 g/ml 
density (25°C), the dynamic viscosity ≈360 MPa (25°C) and 
about 40% styrene content. Detailed technical information of 
resin is provided in its technical data sheet (Document 1820 
V5 F2, Language ES “draft”, © 2017 Ashland Inc.).  

 

 
FIGURE 1. Hysteresis loop (a) and ∆Z/Z(H) dependence measured at 
300 MHz of Fe3.8Co65.4Ni1B13.8Si13Mo1.35C1.65mcirowire. 
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The composites with ordered glass coated amorphous wires 
embedded in the thermoset matrix polymerization have been 
prepared (Fig.2a). 
For wireless measurements we used the free space 
measurement setup consisting of two broadband horn 

antennas (1-17 GHz) fixed at the anechoic chamber and a 
vector network analyzer, previously employed for the 
characterization of the composites with magnetic wire 
inclusions (see Fig.2b) [18,26]. Such setup, consisting in 
fixed horn antennas fixed in anechoic chamber allows allows 
to characterize the composite of 20 x 20 cm2 with fixed 
incidence and fixed polarization placed inside the window 

(see Fig.2b). The other, completely different, setup with fixed 
horn antennas allows measuring the composites of 20 x 20 
cm2 with fixed incidence and fixed polarization of placed 
inside the window. 
During the matrix polymerization, various processes take 
place, which affect the magnetic properties and the GMI 
effect of microwire inclusions (Fig. 1a).  

In order to understand the processes during the 
polymerization of the composite that can affect the 

microwires we have measured the temperature using a 
conventional thermocouple. Obtained temperature changes 
during the polymerization presented at temperature, T, versus 
time, t, are shown in Fig.3.  

As can be observed from the Fig.3, the matrix 
polymerization produces a heating of the composite up to 80 
oC. On the other hand, when a resin polymerizes, it shrinks, 
since the solid obtained will have a smaller volume than the 
monomer from which it started. 
During the polymerization process of the resin, two processes 
occur simultaneously: volume shrinkage of about 8.2 % and 
resin heating (up to approximately 80 oC). The cured resin 
presents the following mechanical properties: a tensile 
strength of 76 MPa, a tensile modulus of 2.9 GPa, and a 
tensile elongation of 8-10%. 
 The value of applied stresses within the metallic nucleus, 
𝜎𝑚, has been evaluated as previously described elsewhere 
[27]: 
 
𝜎𝑚= 𝐾.𝑃/𝐾𝑆𝑚+𝑆𝑔𝑙, (1) 
 
where k =E2/E1, where E1 and E2 are the Young’s moduli at 
room temperature for the metallic alloy and the glass 
respectively, P is the applied mechanical load, and Sm and 
Sglare the cross sections of the metallic nucleus and glass 
coating respectively. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

 
As described above, we performed in-situ experiments on 
glass-coated microwires embedded in a polymerized 
composite placed inside the anechoic chamber during the 
resin polymerization. We measured the transmission 
parameter, T, and reflection parameter, R, of the 
polymerizing matrix containing the 
Fe3.8Co65.4Ni1B13.8Si13Mo1.35C1.65 microwires inclusions using 
the free space setup. As shown in Fig.4, significant variation 
in the T parameter is observed in the frequency range, f, of 4-
7 GHz during thermoset matrix polymerization. A non-
monotonic variation of the T-parameter is observed (Fig.4a). 
Additionally, some changes in the R- parameter are also 
observed over a wide frequency range (Fig.4b). 

Similarly to the T and R parameters, changes in the 
frequency dependencies of the T and R-phases are observed 
during the polymerization (see Fig.5). 
As in the case of the T-parameter, a non-monotonic change 
in the T-phase is observed (see Fig.4a). Similarly, the R-
parameter exhibits a monotonic change in the R-phase upon 
polymerization (see Fig.4b). 

Although generally the distribution of the internal 
stresses arising during polymerization is generally non-
homogeneous, the matrix generally shrinks during cooling 
[30]. Therefore, we can assume that the matrix shrinkage 

 
FIGURE 2Evolution of temperature upon the 
polymerization. 
 

 
FIGURE 3Evolution of temperature upon the matricx 
polymerization 
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FIGURE 2. Sketch of a FRC with embedded microwires and (a) and 
of the free-space setup (b). 
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produces compressive stresses in magnetic nucleus of glass-
coated microwires. 

Accordingly, the observed evolution of electromagnetic 
properties must be attributed to the combination of heating 

and mechanical stresses arising during the matrix 
polymerization. 
 The observed T(f) dependencies with are non- 
monotonic (see Fig.4a): there is an initial increase in T up to 
t=15 min (at f ≈4-7 GHz), followed by a decrease in  T for  
t>15 min. Such evolution of T-parameter can be therefore 
associated to the heating and consequent cooling of the FRC. 

In order to evaluate the effect of the matrix 
polymerization, we provided the additional experiments. 
Previously was demonstrated that the hysteresis loops of 
amorphous microwires are rather sensitive to applied stress 
[31,32]. Therefore, we have measured the hysteresis loops of 
studied samples under applied tensile stress (see Fig.6a). The 
hysteresis loops of studied Co-rich microwire maintain their 
linear shape under applied stress; however, a significant and 
nearly linear increase in the magnetic anisotropy field, Hk, 
upon tensile stress can be observed (see Fig.6a,b). On the 
other hand, the change of the hysteresis loops of the 
microwires embedded in the thermoset resin during its 
polymerization exhibits a different behavior: For a short 
polymerization time, t,  the hysteresis loops maintain the 
inclined character (similar to the behavior of the individual 
wires under tensile stress) (see Fig.6c). However, as t 
increase, the hysteresis loops become almost rectangular. 
This behavior is the opposite to the effect of tensile stress 
shown in Fig.6a. This difference can also be appreciated in 
the Hk(t) dependence shown in Fig.6d. 
Therefore, one can assume that such behavior at large t must 
be attributed the matrix shrinkage, i.e. the effect of 
compressive stresses on magnetic properties of studied 
microwires. 
The heating influence on the hysteresis loops can be 
understood by considering the origin of the internal stresses 
in glass-coated microwires. As discussed elsewhere, the main 
source of internal stresses in glass-coated microwires is the 
rapid solidification of the metallic alloy surrounded by the 
glass-coating, which has rather different thermal expansion 
coefficients [33-36]. Accordingly, as the difference in 
thermal expansion coefficients between the metal alloy and 
the glass coating decreases upon heating, internal stresses 
decrease. Recently such effect of heating on the hysteresis 
loop of Co-rich microwires with vanishing magnetostriction 
coefficient has been experimentally confirmed [37]. 
Similarly to our results, the transformation of the hysteresis 
loop from linear to rectangular was observed upon heating 
[37]. 
In contrast to the non-monotonic change in temperature 
during polymerization, we assume that the compressive 
stresses due to matrix shrinkage change monotonously. 
Therefore, we assume that the observed changes in Figs 4 
and 5 are a result of both heating and matrix shrinkage during 
the polymerization. 
Consequently, we have demonstrated that the evolution of 
the transmission and reflection parameters of composites 
with magnetic microwire inclusions using free space 

 

 
FIGURE 4. The Transmission, T (a) and reflection, R (b) 
parameters measured using free-space system during the 
composite polymerization. 
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FIGURE 5. The T-phase (a) and R-phase (b) measured  during 
the composite polymerization 
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technique can be utilized to monitoring the polymerization 

composite.  Moreover, this method proves to be useful for 
remote stress or temperature monitoring during 
polymerization, as well as for real-time non-destructive 
monitoring of stresses and temperature in composites during 
their operational use. 
 

IV. CONCLUSION 

We have carried out in-situ studies to investigate the the 
impact of matrix polymerization on the evolution of the 
transmission and reflection parameters in composites 
containing glass-coated microwires inclusions, using the free 
space technique. 
Significant and non-monotonic changes in the T-parameter 
(within the 4-7 GHz) and R-parameter were observed during 
the polymerization of the composite. These experimental 
results have been correlated to the heating observed during 
the matrix polymerization and the matrix shrinkage that 
occurs as a result.  The influence of heating and compressive 
stresses caused by matrix shrinkage on the hysteresis loops of 
glass-coated microwires was discussed. 
These experimental findings are crucial for the development 
of a new sensing technique that enables non-destructive and 
non-contact monitoring of the composites with tunable 
magnetic permittivity sensitive to applied stress and 
temperature utilizing ferromagnetic glass-coated microwire 
inclusions with magnetic properties that are sensitive to 
applied stress and temperature variations. 
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