
CUDA-Based Particle Swarm
Optimization in Reflectarray Antenna
Synthesis
Amedeo Capozzoli, Claudio Curcio, Angelo Liseno
Universitá di Napoli Federico II, Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, via Claudio 21, I 80125 Napoli (Italy)

Corresponding author: Amedeo Capozzoli (e-mail: a.capozzoli@unina.it)

ABSTRACT The synthesis of electrically large, highly performing reflectarray antennas can be compu-
tationally very demanding both from the analysis and from the optimization points of view. It therefore
requires the combined usage of numerical and hardware strategies to control the computational complexity
and provide the needed acceleration. Recently, we have set up a multi-stage approach in which the first stage
employs global optimization with a rough, computationally convenient modeling of the radiation, while the
subsequent stages employ local optimization on gradually refined radiation models.
The purpose of this paper is to show how reflectarray antenna synthesis can take profit from parallel com-
puting on Graphics Processing Units (GPUs) using the CUDA language. In particular, parallel computing is
adopted along two lines. First, the presented approach accelerates a Particle Swarm Optimization procedure
exploited for the first stage. Second, it accelerates the computation of the field radiated by the reflectarray
using a GPU-implemented Non-Uniform FFT routine which is used by all the stages.
The numerical results show how the first stage of the optimization process is crucial to achieve, at an
acceptable computational cost, a good starting point.

INDEX TERMS Reflectarray antenna synthesis, CUDA, parallel programming, Graphics Processing Units
(GPUs), Particle Swarm Optimization.

I. INTRODUCTION

Microstrip reflectarrays (RAs) have attracted much interest in
the last years [1], [2] and several new application fields have
been introduced to RAs, as THz frequencies [3], 5G [4] and
smart antennas for indoor applications [5].
The design of high performance microstrip reflectarrays re-
quires the ability of exploiting all the degrees of freedom
(DoFs) of the antenna as the positions, the orientations, the
characteristics of the scattering elements or the shape of the
reflecting surface.
Managing a large number of DoFs requires a proper synthe-
sis strategy trading-off effectiveness and efficiency through
efficient and effective numerical algorithms guaranteeing
reliability, keeping the computational complexity low and
exploiting highly performing computing hardware.
To guarantee reliability and accuracy, a multistage approach
has been devised [6]–[8]. The idea is to employ a rough
modeling of the structure to enable robustness against subop-
timal solutions at the early stages and then refining the model
from stage to stage. The success of the whole procedure is
submitted to the capability of the early stages to mitigate the
false solution issue. To this end, the unknowns of the prob-
lem are given proper representations enabling a progressive
enlargement of the parameters space as well as a modulation

of the computational complexity of the approach [6]–[8]. At
the beginning of the whole procedure, few properly chosen
polynomials are employed for the command phases and the
element positions (Zernike polynomials for the phases and
Lagrange polynomials for the positions in this paper) and
progressively increased in number [6]–[8].
The success of the whole procedure is submitted to the
capability of the early stages to mitigate the false solution
issue. To this end, a global optimizer should be adopted.
However, choosing the global optimization algorithm is not
a simple task and a wide discussion is contained in [9]. The
No Free Lunch Theorems [10] provide insight in choosing
the strategy to get a successful algorithm for the problem
at hand. They explore the relationship between an efficient
optimization algorithm and the problem that it is asked to
solve. These results state that a general purpose algorithm
that can be efficiently used in all optimization problems
does not exist: on average, the performances of any two
optimization algorithms are the same across all the possible
optimization problems [10]. Explicitly or implicitly inserting
some a priori information on the structure of the problem at
hand should improve the performance. It is suggested that
an algorithm can be “aligned” to the structure of the problem
because of an implicit tuning procedure due to training and/or

66 VOL. 9, NO. 2, OCTOBER 2020

A. Capozzoli et al.

to the years of research [10].
On the other side, the high dimensionality of a problem is
the main obstacle towards effective global optimization. The
amount of computing time required to get a reliable solu-
tion becomes inordinate as long as the number of variables
increase [11], [12]. In particular, the dependence of the per-
formances of a global optimization algorithm versus the di-
mension of the searching space can be rigorously established
thanks to Nemirovsky and Yudin Theorem [12]. It proves the
exponential dependence of the number of minimization steps
on the dimensionality of the problem.
Accordingly and once again, the number of unknowns of the
problem must be modulated during the design by using a
proper representation of the unknowns enabling its progres-
sive enlargement [6]–[8]. Then, global optimization can be
exploited as starting stage, while local tools can be employed
in the subsequent ones.
In this paper, we use a Particle Swarm Optimization (PSO)
approach [13]. PSO, indeed, is a simple, but powerful op-
timization algorithm which searches for the optimum of a
function following rules inspired by the behavior of flocks
of bees looking for food. PSO has recently gained more
and more popularity due to its robustness, effectiveness,
and simplicity. Furthermore, PSO enables a very efficient
implementation since it maps into a highly parallelizable
computing pattern and is amenable of acceleration using
Graphics Processing Units (GPU) computing.
We show how PSO can take profit from this technology. In
particular, we provide an implementation of PSO in CUDA
language, the NVIDIA Compute Unified Device Architecture
that represents the extension of C++ to let a large class
of users able to program GPUs for numerical computing
applications. CUDA has indeed already shown to be very
promising for antenna analysis [14], [15] and synthesis [8]
to accelerate computations. We show how computing time
can be kept at very convenient duration for the application at
hand.
The presented approach is further accelerated by the use
of Non-Uniform FFTs [16] for the evaluation of the field
radiated by the RA [14]. The Authors have been the first
employing NUFFT algorithms for the calculation of the
field radiated by aperiodic arrays and RAs [14]. They have
presented an improved version of [16] in [17].
The paper is organized as follows. In Section II, the approach
is sketched. In particular, the radiative model is described
along with its calculation by a NUFFT. Furthermore, the
NUFFT algorithm is briefly described along with its GPU
implementation. Section III is devoted to discuss the GPU-
based PSO implementation. In Section IV, the results are
presented. Finally, in Section V, the conclusions are drawn.

II. THE APPROACH
A simplified layout of the multi-stage synthesis approach
is illustrated in Fig. 1. We refer to [6]–[8] for a complete
description of the approach.
In the initial stages, an approximate radiative model, namely,

the Phase-Only (PO) model, is adopted leading to the Phase-
Only Synthesis (POS) stage. For a POS, the unknowns to be
determined are the element positions as well as the command
phases. Then, an accurate model exploiting all the DoFs
refines the results from the POS stages and leads to the
Accurate Synthesis (AS). For the AS, the unknowns turn to
be the internal DoFs of each element. The element positions
can be further refined or, for the sake of simplicity, the result
of the POS, in terms of element positions, can be kept fixed.
In this paper, attention is focused to the POS only.
In order to limit the number of unknowns and make the
use of a global optimizer affordable to generate a good
initial guess, in stage 1), few polynomials are exploited to
represent command phases and element positions. In stage
2), the number of the unknowns is progressively enlarged
by increasing the order of the involved polynomials and a
local optimizer is considered. Stage 3) exploits an impulsive
representation of the unknowns involving all the effective
DoFs at disposal for the command phases.
The details common to the three synthesis stages are now
in order. The purpose of each stage is to find the unknown
parameters, which change from stage to stage, in order to
satisfy the coverage requirements. The unknown parameters,
say R for the command phases and P for the element posi-
tions, should be obtained by minimizing a proper objective
functional Φ given by:

Φ(R,P) =
∥∥Aco(R,P)− PUco(Aco(R,P))

∥∥2 +∥∥Acr(R,P)− PUcr (Acr(R,P))
∥∥2 (1)

where (Aco, Acr) is the relevant radiation operator, namely{
Aco = |Eco|2
Acr = |Ecr|2

, (2)

Eco and Ecr are the co-polar and cross-polar components
of the far-field, PUco and PUcr are the metric projectors
onto the set Uco and Ucr that contain all the power patterns
satisfying the specifications for the co-polar and cross-polar
components [18], and ‖ · ‖ is a properly chosen norm.
The sets Uco and Ucr are defined by mask functions
(mco,Mco) and (mcr,Mcr), respectively, determining upper
and lower bounds for Aco and Acr, respectively [18]. The
metric projectors PUco(Aco) and PUcr (Acr) are defined as
[18]

PUco,cr (Aco,cr) =

 mco,cr if Aco,cr ≤ mco,cr

Aco,cr if mco,cr ≤ Aco,cr ≤Mco,cr

Mco,cr if Mco,cr ≤ Aco,cr
.

(3)
For the cases of interest here, Φ will refer only to the

copolar term and only the Aco operator (which will changed
depending on the stage) will be relevant to our purposes.
In this paper, for the sake of brevity, only some implementa-
tion details of the POS stages are discussed.

VOL. 9, NO. 2, OCTOBER 2020 67

A. Capozzoli et al.

1) POS - Global: Zernike and Legendre

2) POS - Local: Zernike and Legendre

3) POS - Local: Impulses and Legendre

4) Accurate synthesis

Antenna layout

FIGURE 1. Stages of RA synthesis approach.

A. THE RADIATIVE MODEL AND THE NUFFT
We refer to a flat aperiodic RA, made up by N elements,
illuminated by a feed located at the origin of the Oxyz refer-
ence system as shown in Fig. 2. The feed is assumed to have
the typical cosmf (θn) pattern, where θn is the angle under
which the feed sees the n-th element having coordinates
(xn, yn, z0) and located at a distance rn from the feed. In
this way, the 2D aperiodic array factor F is:

Fkl =

N∑
n=1

ejϕn cosmf (θn)
e−jβrn

rn
ej2π(k∆u

λ xn+
l∆v
λ yn) (4)

when evaluated at a regular spectral grid (uk, vl) =
(k∆u, l∆v), with k = −N1/2, . . . , N1/2 − 1 and l =
−N2/2, . . . , N2/2 − 1, the ϕn’s being the element control
phases, λ being the wavelength and β = 2π/λ the wavenum-
ber.
Apart from an unessential conjugation, F has the same
expression of a 2D Non-Uniform Discrete Fourier Transform
(NUDFT) of NED (Non-Equispaced-Data) type whose ex-
pression is

ẑkl =

N∑
i=1

zie
−j2πx̃i k

N1 e−j2πỹi
l
N2 . (5)

In eq. (5), the zi’s represent the sequence to be trans-
formed, sampled at the non-uniform spatial coordinates
(x̃i, ỹi), and the ẑkl’s represent the transformed one. Accord-
ingly, the array factor (4) can be effectively and efficiently
evaluated using a 2D NED-NUFFT algorithm [14], [16],
[17].

B. THE 2D NED-NUFFT ALGORITHM
To guarantee a fast and accurate processing, the “non-
uniformly sampled” exponentials exp (−j2πx̃ik/N1) and
exp (−j2πỹil/N2) appearing in eq. (5) need to be properly
interpolated. The idea behind NED NUFFTs is to use “uni-
formly sampled” exponentials exp (−jmξ).

FIGURE 2. RA geometry.

The exponential representation is made possible by the use
of the Poisson summation formula [17], [19]. Indeed, under
general hypotheses, given a function f , then

∑
m∈Z f(ξ +

2mπ) converges absolutely almost everywhere to the 2π-
periodic locally integrable function simply expressed through
a Fourier series

∑
m∈Z

f(ξ + 2mπ) ∼
√

2π
∑
m∈Z

f̂(m)ejmξ, (6)

where f̂(m) = F [f ;m] is the Fourier transform of f
calculated at m.
Let us then consider a window function φ(ξ) having compact
support in (−ξM , ξM). The Poisson formula can be then
applied to the function φ(ξ) exp (−jxξ):

e−jξx =
√

2π

∑
m∈Z F

[
φ(ξ)e−jξx;m

]∑
m∈Z φ (ξ + 2mπ) e−j2mπx

. (7)

In order to obtain a computationally convenient expression
of exp (−jxξ), the denominator must be factored in the
variables x and ξ. A straightforward way to achieve factoriza-
tion is to avoid that the replicas φ(ξ + 2mπ) exp (−j2kπξ)
overlap, which is related to the replication period 2π of the
Poisson summation formula in eq. (7) and to a proper choice
of the support of φ(ξ). In particular, we have:

e−j2πx̃i
k
N1 '

√
2π

φ
(

2πk
cN1

) µi+K∑
m=µi−K

φ̂ (cxi −m) e−j2πm
k
cN1 ,

(8)
where φ is the window function with support in

(−π/c, π/c) having Fourier transform φ̂ with support in
(−K,K), c is an oversampling factor, and µi = Int[cx̃i],
Int[·] denoting he integer part. A similar expression can be
obtained for the exponential with ỹi, by introducing νi =
Int[cỹi].
By denoting with

68 VOL. 9, NO. 2, OCTOBER 2020

A. Capozzoli et al.

 φ1k = φ
(

2π k
cN1

)
φ2k = φ

(
2π l

cN2

)
φ̂it = φ̂(cxi−(µi+t))√

2π
ψ̂it = φ̂(cyi−(νi+t))√

2π

, (9)

by assuming that both φ̂it and ψ̂it vanish outside 0 ≤
i ≤ M and −K ≤ t ≤ K and by exploiting the fact that
exp(−j2π(m + cN1)k/(cN1)) = exp(−j2πmk/(cN1))
and exp(−j2π(n + cN2)l/(cN2)) = exp(−j2πnl/(cN2)),
eq. (5) can be written as

ẑkl =
1

φ1kφ
2
l

cN1/2−1∑
m=−cN1/2

cN2/2−1∑
n=−cN2/2

umne
−j2πm k

cN1 e−j2πn
k
cN2 ,

(10)
where

umn =

+∞∑
i=−∞

+∞∑
p=−∞

+∞∑
q=−∞

ziφ̂i m+cpN1−µi ψ̂i n+cqN2−νi .

(11)
Therefore, eq. (10) is essentially given by the three steps

[17]:
• interpolation to obtain umn (eq. (11));
• standard two-dimensional FFT on cN1 × cN2 points;
• scaling and decimation.
It should be noticed that, in eq. (11), the umn’s receive

contribution only from a very limited number of terms.
Indeed, the φ̂ and ψ̂ in eq. (11) are different from zero only
for

|m+cpN1−µi| ≤ K � cN1 |n+cqN2−νi| ≤ K � cN2,
(12)

where typical values for K are 3 and 6.
Finally, let us highlight that the obtained overall computa-
tional complexity is O((cN)2 log(cN)) for N ∼ N ∼ N2,
N1, N2, M � K.

C. ACCELERATION OF THE PATTERN EVALUATION
Once described the 2D NED-NUFFT algorithm, let us briefly
sketch the GPU acceleration.
The most difficult step to be implemented on GPU is the
interpolation stage [8], [14]. Accordingly, only for this stage,
we present some details of the strategy exploited to profit of
the available massive parallelism.
If we denote the input index with i and output indices withm
and n, according to eq. (12), a given input index contributes
only to a small number of output terms. The adopted solution
assigns each GPU thread to an input index. Unfortunately,
with such a choice, race conditions occur since different
inputs can contribute to the same output. The problem is
solved by profiting of a special feature of GPU: the atomic
operations. They make the access of different threads to the
same output location (in the GPU global memory) serial.
Dynamic Parallelism has been exploited to perform the two

nested “for loops” with indices p and q occurring in eq. (11),
each one spanning only 2K + 1 cycles. Indeed, the CUDA
Dynamic Parallelism allows each CUDA function (kernel) to
give work to itself, thus making the easy implementation of
recursive algorithms possible, exploiting different levels of
parallelism.
We present now some codes to let the Reader take a closer
look at the details of the adopted coding strategy. In the
Listing 1, each parent thread is assigned to an input index
i. The parent thread (first level of parallelism) generates
(2K + 1)× (2K + 1) children (second level of parallelism),
by calling the “series terms” kernel shown in Listing 2. Each
child thread takes into account for a single loop cycle (double
summation).
The implemented NUDFT NED provides a significant
speedup of the array factor calculation, of one order of
magnitude with respect to a CPU code, for a RA made of
100× 100 elements

_ _ g l o b a l _ _ void In te rpola t ionNFFT2_2DGPUKerne l (_)
{

i n t i = t h r e a d I d x . x + blockDim . x * b l o c k I d x . x ;
double c c _ p o i n t s 1 =cc *x [i] ;
/ / I t i s t h e mu
double r _ c c _ p o i n t s 1 = r i n t (c c _ p o i n t s 1) ;
c o n s t double c c _ d i f f 1 =

c c _ p o i n t s 1−r _ c c _ p o i n t s 1 ;

double c c _ p o i n t s 2 =cc *y [i] ;
/ / I t i s t h e nu
double r _ c c _ p o i n t s 2 = r i n t (c c _ p o i n t s 2) ;
c o n s t double c c _ d i f f 2 =

c c _ p o i n t s 2−r _ c c _ p o i n t s 2 ;

doub le2 t emp_da ta = d a t a [i] ;
dim3 dimBlock (1 3 , 1 3) ; dim3 dimGrid (1 , 1) ;
s e r i e s _ t e r m s <<<dimGrid , dimBlock >>>(_) ; }

Listing 1. CUDA interpolation Kernel using the dynamic parallelism.

III. PSO

PSO [13] is a global optimization algorithm working accord-
ing to the behavior of flocks of bees in search of food. It
shows appealing convergence properties that can be obtained
by tuning its parameters in order to align the algorithm to
the problem at hand. PSO shows a highly parallelizable
computing pattern, making its implementation amenable of
acceleration using GPUs [20]. This mitigates the need of
large number of iterations and of particle updates and fitness
evaluations [13].
The search space dimension in PSO equals the overall num-
ber of unknowns Nunkn, i.e., the number of polynomial
coefficients used to represent the command phase and the
element coordinates. The particles’ position and the so-called
“velocity” X(t) and V (t), respectively, at the iteration step
fictitiously represented by the time variable t, are Nunkn-
dimensional vectors whose update rule is given by

VOL. 9, NO. 2, OCTOBER 2020 69

A. Capozzoli et al.

_ _ g l o b a l _ _ void s e r i e s _ t e r m s (_) {
i n t m = t h r e a d I d x . x ;
i n t n = t h r e a d I d x . y ;

double tempd , p h i _ c a p ;

double P = K*K−(c c _ d i f f 1 −(m−K)) *
(c c _ d i f f 1 −(m−K)) ;

i f (P < 0 .) {
tempd= r s q r t (−P) ;
p h i _ c a p = (1 . / p i _ d o u b l e)*

((s i n (a l p h a / tempd)) * tempd) ; }
e l s e i f (P > 0 .) { tempd= r s q r t (P) ;

p h i _ c a p = (1 . / p i _ d o u b l e)*
((s i n h (a l p h a / tempd)) * tempd) ; }

e l s e p h i _ c a p = a l p h a / p i _ d o u b l e ;

P = K*K−(c c _ d i f f 2 −(n−K)) *
(c c _ d i f f 2 −(n−K)) ;

i f (P < 0 .) { tempd= r s q r t (−P) ;
p h i _ c a p = p h i _ c a p * (1 . / p i _ d o u b l e)*

((s i n (a l p h a / tempd)) * tempd) ; }
e l s e i f (P > 0 .) { tempd= r s q r t (P) ;
p h i _ c a p = p h i _ c a p * (1 . / p i _ d o u b l e)*

((s i n h (a l p h a / tempd)) * tempd) ; }
e l s e p h i _ c a p = p h i _ c a p * a l p h a / p i _ d o u b l e ;

i n t PP1 = modulo ((r _ c c _ p o i n t s 1 +
(m−K)+N1* cc / 2) , (cc *N1)) ;

i n t PP2 = modulo ((r _ c c _ p o i n t s 2 +
(n−K)+N2* cc / 2) , (cc *N2)) ;

atomicAdd(& r e s u l t [IDX2R (PP1 , PP2 , cc *N2)] . x ,
t emp_da ta . x* p h i _ c a p) ;

atomicAdd(& r e s u l t [IDX2R (PP1 , PP2 , cc *N2)] . y ,
t emp_da ta . y* p h i _ c a p) ; }

Listing 2. CUDA summation kernel invoked by the interpolation one.


V (t) = wV (t− 1)+

C1R1 [Xbest(t− 1)−X(t− 1)] +
C2R2

[
Xgbest(t− 1)−X(t− 1)

]
X(t) = X(t− 1) + V (t)

(13)

In eqs. (13), the velocity is actually dealt with as a “dis-
placement” vector. Furthermore, in eqs. (13), C1 and C2

are proper positive constants, R1 and R2 are two random
numbers uniformly distributed in [0, 1], Xbest(t − 1) is the
best-fitness position (local best) reached by an individual
particle at the time t− 1 and Xgbest(t− 1) is the best-fitness
position (global best) ever found by the whole swarm up to
t−1. Moreover, the term Xbest(t−1)−X(t−1) represents
the cognitive contribution while Xgbest(t − 1) − X(t − 1)
is the social contribution. Finally, w is the so-called inertia
weight [21] balancing global and local search.
According to eq. (13), the processing consists of five main
steps: a) Initialization; b) Positions update; c) Fitness evalu-
ation function; d) Local best update kernel; e) Global best
update kernel. A code snippet of the PSO is illustrated in
Listing 3.
Note that, in the set up implementation, the PSO optimization
can be stopped according to two criteria: a) a fixed num-
ber of iterations; b) the global optimum does not change

for a certain number (e.g., 3) of consecutive iterations. In
other words, the termination condition accounts for either
a prefixed computation time, which is related to the overall
number of iterations, or a persistent stagnation connected
to a significant reduction of the functional with respect to
the initial value. Obviously, a prefixed number of iterations
does not ensure the algorithm convergence, but it indicates
the depletion of an assigned resource, namely, computation
time. We have anyway experienced that, for the synthesis
cases of our interest, a number of about 100 iterations is
sufficient to achieve satisfactory results, so that criterion a)
will be henceforth used. The implementation in Listing 3
corresponds to this choice.
The five steps are detailed in the following Subsections.
void h_PSO_Optimize (void) {

. . .

p a r t i c l e s _ i n i t i a l i z a t i o n < < < . . . > > > (. . .) ;

C o s t F u n c t i o n a l C a l c u l a t i o n (. . .) ;

l o c a l _ b e s t _ u p d a t e < < < . . . > > > (. . .) ;

f o r (gen = 1 ; gen < numGen ; ++gen) {

g _ p o s i t i o n s U p d a t e < < < . . . > > > (. . .) ;

C o s t F u n c t i o n a l C a l c u l a t i o n (. . .) ;

l o c a l _ b e s t _ u p d a t e < < < . . . > > > (. . .) ;

h _ f i n d G l o b a l B e s t (. . .) ; }

h _ f i n d G l o b a l B e s t (. . .) ; }

Listing 3. PSO function.

A. INITIALIZATIONS
Outside of the loop, the particles are initialized by using
routines from the cuRAND library. Furthermore, the fitness
for each particle and the local particle bests are initialized.
The latter will be illustrated in Subsection 3.4. The former is
sketched in Listing 4.
_ _ g l o b a l _ _ void p a r t i c l e s _ i n i t i a l i z a t i o n (. . .) {

c o n s t unsigned i n t t i d = t h r e a d I d x . x
+ b l o c k I d x . x * blockDim . x ;

f l o a t R = c u r a n d _ u n i f o r m (& d e v S t a t e s [t i d]) ;
f l o a t pos = c_minValues [t h r e a d I d x . x] +

R * c _ d e l t a V a l u e s [t h r e a d I d x . x] ;
d _ p o s i t i o n s [t i d] = pos ;
d _ b e s t _ p e r s o n a l _ p o s i t i o n s [t i d] = pos ;

R = c u r a n d _ u n i f o r m (& d e v S t a t e s [t i d]) ;
f l o a t v e l = c_minValues [t h r e a d I d x . x] +

R * c _ d e l t a V a l u e s [t h r e a d I d x . x] ;
d _ v e l o c i t i e s [t i d] = (v e l − pos) / 2 . 0 ; }

Listing 4. Particles initialization function.

70 VOL. 9, NO. 2, OCTOBER 2020

A. Capozzoli et al.

B. POSITIONS UPDATE
Concerning the positions update, eq. (13) shows that, once
the information related to the global best has been achieved,
there is no need for any further communication among the
particles. Accordingly, the update can occur in parallel both
across the particles and across the particle dimensions. The
kernel function performing the position update is schemati-
cally reported in Listing 4. For the execution of such a kernel,
different blocks are assigned to handle different particles,
while their corresponding block threads manage the particle
dimensions. Care has been taken to store as much as possible
local (to the thread) temporary data within the registers while
avoiding register spilling. It is noted that the kernel function
in Listing 4 also performs the update of the best personal par-
ticle position. However, to save global memory storage time,
such update is performed only if the neighboring particles
have better personal best positions than the particle at hand.
The particle neighborhood is evaluated by storage of the
relevant arrays in the texture memory. Further global memory
loads are saved by storing the Boolean update information in
the shared memory.
The positions update kernel is sketched in Listing 5.
_ _ g l o b a l _ _ void g _ p o s i t i o n s U p d a t e (. . .) {

unsigned i n t t i d = b l o c k I d x . x * blockDim . x
+ t h r e a d I d x . x ;

_ _ s h a r e d _ _ unsigned i n t s _ u p d a t e ;
_ _ s h a r e d _ _ unsigned i n t s _ b e s t I D ;

i f (t h r e a d I d x . x == 0){
s _ u p d a t e = d _ t o _ b e _ u p d a t e d [b l o c k I d x . x] ;
s _ b e s t I D = d _ l o c a l B e s t I D s [b l o c k I d x . x]

* blockDim . x ;
}
_ _ s y n c t h r e a d s () ;

f l o a t pos = d _ p o s i t i o n s [t i d] ;
f l o a t b e s t P o s = d _ b e s t _ p e r s o n a l _ p o s i t i o n s [t i d] ;
f l o a t v e l = d _ v e l o c i t i e s [t i d] ;

f l o a t R1 , R2 ;
R1 = c u r a n d _ u n i f o r m (& d e v S t a t e s [t i d]) ;
R2 = c u r a n d _ u n i f o r m (& d e v S t a t e s [t i d]) ;

i f (s _ u p d a t e) {
b e s t P o s = pos ;
d _ b e s t _ p e r s o n a l _ p o s i t i o n s [t i d] = b e s t P o s ; }

_ _ t h r e a d f e n c e () ;

v e l *= W;
v e l += C1 * R1 * (b e s t P o s − pos) ;
v e l += C2 * R2 *
(d _ b e s t _ p e r s o n a l _ p o s i t i o n s [s _ b e s t I D

+ t h r e a d I d x . x] − pos) ;

d _ v e l o c i t i e s [t i d] = v e l ;
pos += v e l ;
pos = min (pos , c_maxValues [t h r e a d I d x . x]) ;
pos = max (pos , c_minValues [t h r e a d I d x . x]) ;

d _ p o s i t i o n s [t i d] = pos ; }

Listing 5. Positions update kernel function.

C. FITNESS EVALUATION FUNCTION
Regarding the evaluation of the fitness function in eq. (1),
the far field pattern related to the unknowns represented by
the current particle is calculated first by using the parallel
kernels implementing the 2D NED NUFFT in Listings 1 and
2. Then, the fitness function for each particle is computed
by a reduction operation implemented by using the Thrust
library and stored in an array. Since the local best update
kernel requires finding the best functional around each par-
ticle position as it will be shortly seen, in order to improve
the caching mechanisms, such an array has been bound to a
texture. The fitness evaluation function is reported in Listing
6.

f l o a t r a F u n c t i o n a l C a l c u l a t i o n (. . .) {

. . .

ab sKerne l < < < . . . , . . . > > > (d _ f a r _ f i e l d _ a b s ,
d _ f a r _ f i e l d , . . .) ;

t h r u s t : : d e v i c e _ p t r < f l o a t >
d _ f a r _ f i e l d _ a b s _ d e v i c e _ p o i n t e r =

t h r u s t : : d e v i c e _ p o i n t e r _ c a s t (
d _ f a r _ f i e l d _ a b s) ;

f l o a t s c a l e _ f a c t o r =
t h r u s t : : r e d u c e (

d _ f a r _ f i e l d _ a b s _ d e v i c e _ p o i n t e r ,
d _ f a r _ f i e l d _ a b s _ d e v i c e _ p o i n t e r +
(2 * Nu) * (2 * Nv) ,
s t a t i c _ c a s t < f l o a t > (0) ,
t h r u s t : : maximum< f l o a t > ()) ;

v e c t o r M u l C o n s t a n t (d _ f a r _ f i e l d _ a b s ,
s t a t i c _ c a s t < f l o a t > (1) /

s c a l e _ f a c t o r ,
(2 * Nu) * (2 * Nv)) ;

. . .

e v a l u a t e P r o j e c t i o n < < < . . . , . . . > > > (
d _ f a r _ f i e l d _ a b s _ p r o j e c t e d ,

d _ f a r _ f i e l d _ a b s ,
d _ I n t e r n a l _ C o v e r a g e _ f ,

d _ E x t e r n a l _ C o v e r a g e _ f ,
. . .) ;

e v a l u a t e S q u a r e d D i f f e r e n c e < < < . . . , . . . > > >
(d _ f a r _ f i e l d _ a b s _ p r o j e c t e d ,

d _ f a r _ f i e l d _ a b s , . . .)) ;

. . .

f l o a t Numerator = t h r u s t : : r e d u c e (
d _ f a r _ f i e l d _ a b s _ d e v i c e _ p o i n t e r ,
d _ f a r _ f i e l d _ a b s _ d e v i c e _ p o i n t e r +
(2 * Nu) * (2 * Nv)) ;

f l o a t Denominator =
t h r u s t : : t r a n s f o r m _ r e d u c e (

d _ f a r _ f i e l d _ a b s _ p r o j _ d e v i c e _ p t r ,
d _ f a r _ f i e l d _ a b s _ p r o j _ d e v i c e _ p t r +
(2 * Nu) * (2 * Nv) ,
AbsTwo< f l o a t > () ,
s t a t i c _ c a s t < f l o a t > (0) ,
t h r u s t : : p lu s < f l o a t > ()) ;

Denominator = Denominator * Denominator ;

. . . }
Listing 6. Fitness evaluation function.

VOL. 9, NO. 2, OCTOBER 2020 71

A. Capozzoli et al.

D. LOCAL BEST UPDATE KERNEL
The local best update kernel is meant to update the personal
best fitness value. In this case, a different thread manages a
different particle. Again, to save global memory storage time,
the update is executed only provided that the neighboring par-
ticles have better personal fitness. The necessary minimum
value calculations are obtained by in-kernel Thrust calls. This
is illustrated in the Listing 7.
_ _ g l o b a l _ _ void l o c a l _ b e s t _ u p d a t e (. . .) {

i n t t i d = b l o c k I d x . x * blockDim . x
+ t h r e a d I d x . x ;

f l o a t * l o c a l _ f u n =
(f l o a t *) ma l lo c ((2 * RADIUS + 1)

* s i z e o f (f l o a t)) ;

f o r (i n t i = 0 ; i < 2 * RADIUS + 1 ; i ++)
l o c a l _ f u n [i] =

tex1D (f u n c t i o n a l _ t e x t u r e ,
(f l o a t) (t i d + 0 . 5 + (i − RADIUS))

/ (f l o a t) numPart) ;

t h r u s t : : d e v i c e _ p t r < f l o a t > d e v _ p t r
= t h r u s t : : d e v i c e _ p o i n t e r _ c a s t (l o c a l _ f u n) ;

t h r u s t : : d e v i c e _ p t r < f l o a t > m i n _ p t r
= t h r u s t : : min_e lement (t h r u s t : : seq ,

d e v _ p t r , d e v _ p t r + 2 * RADIUS + 1) ;

d _ l o c a l B e s t I D s [t i d] =
(t i d + (& m i n _ p t r [0] − &d e v _ p t r [0])

− RADIUS + numPart) % numPart ;

i f (gen > 0) {
unsigned i n t u p d a t e = l o c a l _ f u n [RADIUS]

< d _ p e r s o n a l _ b e s t _ f u n c t i o n a l [t i d] ;
d _ t o _ b e _ u p d a t e d [t i d] = u p d a t e ;
i f (u p d a t e)

d _ p e r s o n a l _ b e s t _ f u n c t i o n a l [t i d] =
l o c a l _ f u n [RADIUS] ; }

e l s e d _ p e r s o n a l _ b e s t _ f u n c t i o n a l [t i d]
= l o c a l _ f u n [RADIUS] ; }}

Listing 7. Local best update kernel function.

E. GLOBAL BEST UPDATE KERNEL
The best-fitness position Xgbest(t − 1) is determined by a
direct CUDA Thrust call as illustrated in Listing 8.

void h _ f i n d G l o b a l B e s t (. . .) {

t h r u s t : : d e v i c e _ p t r < f l o a t > dp =
t h r u s t : : d e v i c e _ p o i n t e r _ c a s t (

d _ p e r s o n a l _ b e s t _ f u n c t i o n a l) ;
t h r u s t : : d e v i c e _ p t r < f l o a t > pos =

t h r u s t : : min_e lement (
dp , dp + t i d) ;

* h _ g l o b a l B e s t I D =
t h r u s t : : d i s t a n c e (dp , pos) ;

cudaMemcpy (h _ g l o b a l B e s t F i t n e s s ,
&d _ p e r s o n a l _ b e s t _ f u n c t i o n a l
[* h _ g l o b a l B e s t I D] , s i z e o f (f l o a t) ,
cudaMemcpyDeviceToHost) ; }

Listing 8. Global best update kernel function.

IV. RESULTS
The computational performance of the GPU implementation
of the 2D NED-NUFFT algorithm has been compared with
that of an analogous CPU implementation for 2D RAs having
randomly located elements as well as random command
phases. The codes have been run on an Intel Core i7-6700K,
4GHz, 4 cores (8 logical processors), equipped with an
NVIDIA GTX 960 card, compute capability 5.2. Fig. 3 shows
the GPU vs. CPU speedup when RAs having N elements
are considered. The achieved speedup is larger than 10 even
though atomic operations are employed: atomic operations
on modern GPU architectures are indeed very fast. The
speedup also saturates for values of N approaching millions
of elements due to the saturation of the GPU resources.
Let us now turn to the results of the RA synthesis. The
antenna here considered is an aperiodic RA working at
14.25GHz, with a circular footprint, z0 = 58.3cm, θf equal
to about 11.2◦, yoff = 11.6cm, feed shape factor mf = 12.
The POS synthesized according to stages 1-3 of Fig. 1
provides the number of elements, their coordinates, and the
corresponding command phase. Indeed, the optimization of
the spatial distribution of the elements moves them freely,
but only those elements falling within the assigned circular
antenna footprint are effectively considered as scatterers.
However, constraints on the minimum and the maximum
spacing, equal to 0.49λ and 0.7λ, respectively, are enforced
in all the stages, by discarding solutions not satisfying the
requirements.
A target coverage of South America has been adopted for
the test case, and enforced by two mask functions having
a flat top behavior on the coverage, and a nominal side-
lobe level lower than 40dB. PSO has been executed with a
swarm of 100 particles, by using 56 unknowns, w = 0.721,
C1 = C2 = 1.193. The optimization on 100 iterations takes
about 2hours on a PC equipped with a NVIDIA GTX 960.
Accordingly, thanks to a proper parallelization of the global
optimization and of direct radiation, the code has run in a
convenient time notwithstanding the computational burden of
the problem.
A total number of 2032 elements has been considered for the
synthesized RA.
Fig. 4 reports the directivity pattern synthesized by the first
stage (see Fig. 1), together with the mask functions (black
lines). In other words, the result in Fig. 4 is the one obtained
by the global optimization (PSO) stage which is appointed
to operate on a rough model of the radiation in order to
reduce the overall number of unknowns and to drive the
solution as close as possible to the global optimum of the
problem. Two observations can be made. First, the radiated
pattern has a coverage corresponding to the prescribed one
which suggests that the stage has been successful to bring the
radiated solution close to the desired one. Second, as a result
of the rough modeling, the pattern does not yet satisfactorily
shape the target coverage.
In order to refine the synthesis, the outcome in Fig. 4 has
been used as input to stage 2) and the outcome of stage 2) as

72 VOL. 9, NO. 2, OCTOBER 2020

A. Capozzoli et al.

FIGURE 3. Speedup in log-scale of the 2D NED NUFFT implementation.

FIGURE 4. Directivity pattern synthesized by the PSO.

input to stage 3). The final synthesized pattern at the end of
stage 3) is shown in Fig. 5. Thanks to the improved radiation
model, the pattern shaping is now satisfactory.
We want to finally underline how the use of an efficient
global optimization algorithm as PSO is crucial to achieve a
satisfactory synthesis matching the design specifications. To
this end, we have considered a test case whose first stage has
been skipped and we have proceeded directly with a local
algorithm using a phase representation based on Zernike
polynomials first and on impulses afterwards. The results are
shown in Figs. 6 and 7, respectively. As it can be seen, the
final result in Fig. 7 is significantly worse than that in Fig. 5.

V. CONCLUSIONS
In this paper, the use of GPU computing in reflectarray
antenna synthesis has been discussed.

FIGURE 5. Directivity pattern synthesized after stage 3).

FIGURE 6. Directivity pattern synthesized by a local optimizer using a phase
representation based on Zernike polynomials and skipping PSO.

The described approach uses a multi-stage synthesis struc-
ture, using global and local optimizers. Global optimiza-
tion is afforded by a GPU-based implementation of Particle
Swarm Optimization. To further reduce the computational
burden, the evaluation of the aperiodic array factor is per-
formed by a GPU-implemented Non Uniform FFT routine.
The efficiency of the parallel approach for the analysis and
synthesis of reflectarray antennas and of the parallel PSO
algorithm in particular have been pointed out. More in detail,
the computation time for the direct, parallel evaluation of the
radiated field has shown a large speedup with respect to the
sequential case. Furthermore, we have shown how the use
of PSO in the first algorithm stage is crucial to achieve a
satisfactory synthesis matching the design specifications. We
have also highlighted how, thanks to a proper parallelization
of the computationally most demanding stage of the synthesis

VOL. 9, NO. 2, OCTOBER 2020 73

A. Capozzoli et al.

FIGURE 7. Directivity pattern synthesized by a local optimizer using an
impulse-based phase representation and skipping PSO.

process, i.e., global optimization, as well as of direct radia-
tion, the code has run in a convenient time notwithstanding
the computational burden of the problem.
Finally, several implementation details have been provided to
make the approach reproducible by any interested Reader.

REFERENCES
[1] J. Huang, J.A. Encinar, Reflectarray Antennas, J. Wiley & Sons, Hoboken,

NJ, 2008.
[2] J.A. Encinar, M. Arrebola, and G. Toso, A parabolic reflectarray for a

bandwidth improved contoured beam coverages, Proc. of the Europ. Conf.
on Antennas Prop., Edinburgh, UK, Nov. 11–16, 2007, pp. 1–5.

[3] X. You, R.T. Ako, W.S.L. Lee, M.X. Low, M. Bhaskaran, S. Sriram, C.
Fumeaux, W. Withayachumnankul, Terahertz reflectarray with enhanced
bandwidth, Adv. Opt. Mat., vol. 7, n. 20, pp. 1–8, Oct. 2019.

[4] M.H. Dahri, M.H. Jamaluddin, M.I. Abbasi, M.R. Kamarudin, A review
of wideband reflectarray antennas for 5G communication systems, IEEE
Access, vol. 5, pp. 17803–17815, Aug. 2017.

[5] X. Tan, Z. Sun, J.M. Jornet, D. Pados, Increasing indoor spectrum sharing
capacity using smart reflect-array, Proc. of the IEEE Int. Conf. on Com-
mun., Kuala Lumpur, Malaysia, May 22-27, 2016, pp. 1-6.

[6] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, P. Vinetti, G. Toso, Ape-
riodic and non-planar array of electromagnetic scatterers, and reflectarray
antenna comprising the same, World Patent Nr. WO/2011/033388.

[7] A. Capozzoli, C. Curcio, A. Liseno, G. Toso, Fast, Phase-only synthesis of
flat aperiodic reflectarrays, Progr. Electromagn. Res. vol. 133, pp. 53–89,
2013.

[8] A. Capozzoli, C. Curcio, A. Liseno, G. Toso, Fast, Phase-Only synthesis
of aperiodic reflectarrays using NUFFTs and CUDA, Progr. Electromagn.
Res. vol. 156, pp. 83–103, 2016.

[9] A. Capozzoli, G. D’Elia, Global optimization and antennas synthesis and
diagnosis, part one: concepts, tools, strategies and performances, Progr.
Electromagn. Res. vol. 56, pp. 195-–232, 2006.

[10] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization,
IEEE Trans. Evolutionary Comput., vol. 1, n. 1, pp. 67-82, Apr. 1997.

[11] S.A. Vavasis, Nonlinear Optimization: Complexity Issues, Oxford Science
Publication, New York, 1991.

[12] A. S. Nemirovsky, D.B. Yudin, Problem Convexity and Method Efficiency
in Optimization, John Wiley & Sons, New York, 1983.

[13] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc. of the IEEE
Int. Conf. on Neural Networks, Perth, WA, Nov. 27-Dec. 01, 1995, pp.
1942-1948.

[14] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, P. Vinetti, Fast CPU/GPU
pattern evaluation of irregular arrays, ACES J., vol. 25, n. 4, pp. 355-372,
Apr. 2010.

[15] R.C.M. Pimenta, M.V. Africano, R. Adriano, Ú. C. Resende, 3D CUDA
FDTD based method for analysis of microstrip antennas, Proc. of the
SBMO/IEEE MTT-S Int. Microw. Optoelectr. Conf., Aguas de Lindoia,
Brazil, Aug. 27–30, 2017, pp. 1–5.

[16] K. Fourmont, Non-Equispaced Fast Fourier Transforms with applications
to tomography, J. Fourier Anal. Appl., vol. 9, n. 5, pp. 431-450, 2003.

[17] A. Capozzoli, C. Curcio, A. Liseno, Optimized nonuniform FFTs and their
application to array factor computation, IEEE Trans. Antennas Prop., vol.
67, n. 6, pp. 3924—3938, Jun. 2019.

[18] O.M. Bucci, G. D’Elia, G. Mazzarella, G. Panariello, Antenna pattern
synthesis: A new general approach, Proc. of the IEEE, vol. 82, n. 3, 358—
371, Mar. 1994.

[19] R.M. Tribug, E.S. Belinsky, Fourier Analysis and Approximation of Func-
tions, Springer Science+Business Media, Dordrecht, NL, 2004.

[20] L. Mussi, F. Daolio, S. Cagnoni, Evaluation of particle swarm optimization
algorithms within the CUDA architecture, Information Sciences 181:
4642–4657, 2011.

[21] Y. Shi, R. Eberhart, A modified particle swarm optimizer, Proc. of the
IEEE Int. Conf. on Evolutionary Comput., Anchorage, Ak, May 4-9, 1998,
pp. 69–73.

74 VOL. 9, NO. 2, OCTOBER 2020

