Simulation of Plasmonics Nanodevices with Coupled Maxwell and Schrödinger Equations using the FDTD Method

Iftikhar Ahmed and Erping Li

Abstract

A numerical approach that couples Loren tz-Drude model incorporated Maxwell equations with Schrödinger equation is presented for the simulation of plasmonics nanodevices. Maxwell equations with Lorentz-Drude (LD) dispersive model are applied to large size components, whereas coupled Maxwell and Schrödinger equations are applied to components where quantum effects are needed. The finite difference time domain method (FDTD) is applied to simulate these coupled equations. Numerical results of the coupled approach are compared with the conventional approach.

1. Introduction

The miniaturization of devices and high speed data are main challenges with existing silicon based technologies, and the reasons behind are diffraction limit and RC time delay respectively. For the solution of such challenges different efforts have been done in the past, however, an area known as plasmonics has been introduced recently to handle them, and it has shown promising applications [1-3]. Plasmonics deals with collective oscillation of free electrons at the interface of dielectric and metal, which remain bound to the surface. Plasmonics is generally categorized into surface plasmon polaritons (SPP) and localized surface plasmon resonance (LS PR). The first one is more suitable for information transmission related applications, while the second one is preferable for sensing applications. A wide range of plasmonic devices have been simulated, fabricated and characterized [1-10]. Some interesting results show that the surface plasmon polariton has strong analogy to Young’s double-slit experiment and is discussed in [4]. The concept of semiconductor plasmonics using a solid state model that includes Pauli exclusion principle, state filling effect, Fermi-Dirac thermalization, an external magnetic field, and dielectric layer is presented in [5]. A numerical approach that consists of solid state and Lorentz-Drude model is presented to simulate active plasmonics devices [6], and it is also used to simulate a plasmonic source , and hence light extraction from the source [7]. Some other active plasmonic devices such as Plas-MOStor (plasmonic based transistor) ultrafast static devices, passive acive photonics circuits using SPP have been reported in [8-10]. The concept of replacing the conventional gold and silver with doped semiconductors and intermetalics has been discussed in [11]. Plasmonic based phenomena have potential to handle the challenges with existing CMOS and photonics technologies, and can be used to interface photonics and electronics devices effectively. However, modeling and simulation of such interfacing domains become complex due to different scales of components. These complexities can be solved by applying different techniques. Nonetheless, when the size of a device reduces to a few nanometers, quantum effects dominate and their considerations become important to maintain the accuracy. The refore, to incorporate them into modeling and simulation techniques, modifications in the conventional numerical techniques are needed, while the conventional numerical techniques have performed well for the simulation of bulk materials and devices. For quantum effects there is need to adopt some appropriate approaches from quantum mechanics, and usually Schrödinger equation is considered to incorporate such effects. On the other hand Maxwell equations are used for electromagnetic effects. Therefore, these equations are coupled to simulate those applications in which combined effects are needed [12-13]. In [12] a hybrid transmission line matrix (TLM) [14] and FDTD [15], and in [13] a hybrid locally one dimensional (LOD)-FDTD [16] and FDTD methods are applied to coupled non-dispersive Maxwell and Schrödinger equations. In [12] the FDTD method is applied to Schrödinger equation to simulate carbon nanotube while the TLM method is applied to the conventional non-dispersive Maxwell equations to simulate carbon nanotube while the LOD-FDTD and FDTD methods are applied to coupled non-dispersive Maxwell and Schrödinger equations. In [12] the FDTD method is applied to Schrödinger equation to simulate carbon nanotube while the TLM method is applied to the non-dispersive Maxwell equations. In [13] the FDTD method is applied to Schrödinger equation to simulate a semiconductor nanowire and the LOD-FDTD method is applied to the conventional non-dispersive Maxwell equations. In this paper, as compared to the [12-13], the LD dispersive model [17] is incorporated Maxwell equations are coupled with Schrödinger equation to simulate the components in which quantum effects are needed. The FDTD method is applied to simulate the self coupled led equations. In section 2, detailed
formulation of the Maxwell equations with LD model I, formulation of the Schrödinger equation in the presence of external electromagnetic fields, and discretization using the FDTD method are presented. The reason of using LD model as compared to the other dispersive models is because of its better accuracy for broader range of wavelengths. In section 3, numerical results of the coupled approach are compared with those from the conventional Maxwell approach and at the end conclusion is given.

2. Formulations

The time-dependent Maxwell equations with frequency dependent permittivity and quantum current density are written as

\[
\frac{\partial \mathbf{E}}{\partial t} = -\nabla \times \mathbf{H} \quad \text{(1)}
\]

\[
\varepsilon(\omega) \frac{\partial \mathbf{H}}{\partial t} = \nabla \times \mathbf{E} - \mathbf{J}_q \quad \text{(2)}
\]

where \(J_q \) is quantum current density, \(\varepsilon(\omega) = \varepsilon_0 + \varepsilon_1(\omega) \) is the frequency-dependent permittivity, and is obtained from Lorentz-Drude dispersive model. In the model, Drude part deals with dependent permittivity and is obtained from Lorentz-Drude model (intraband effects) and some mathematical simplifications we get following equations

\[
\nabla \times \mathbf{H} = \varepsilon_0 \varepsilon_\infty \frac{\partial \mathbf{E}}{\partial t} + \mathbf{Q} + \varepsilon_0 \frac{\partial \mathbf{P}}{\partial t} + \mathbf{J}_q \quad \text{(4)}
\]

\[
\frac{\partial \mathbf{Q}}{\partial t} = \frac{\omega_0^2 \varepsilon_0 \varepsilon_\infty \mathbf{E} Q - \mathbf{Q}}{\omega_0^2} + \mathbf{J}_q \quad \text{(5)}
\]

\[
\frac{\partial \mathbf{P}}{\partial t} - \frac{\omega_0^2 \mathbf{P}}{\omega_0^2} + \mathbf{G} = \frac{\Delta \varepsilon_L \omega_0^2 \mathbf{P} L}{\omega_0^2} \quad \text{(6)}
\]

Where terms with subscript \(D \) denote Drude model and terms with subscript \(L \) denote Lorentz model. Drude part deals with dispersive model and quantum current density, ii) a region in which quantum current density is required but not dispersive model, iii) a section in which dispersive model is needed but not quantum current density, iv) a region where both effects are needed. Under all these scenarios equation (2) will be modified based on the situation.

After some mathematical simplifications, equation (4) can be written as

\[
\frac{\partial \mathbf{E}_x}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_\infty} \left(\frac{\partial \mathbf{H}_y}{\partial z} - \frac{\partial \mathbf{H}_z}{\partial y} \right) - \frac{1}{\varepsilon_\infty} \frac{\partial \mathbf{Q}_x}{\partial x} - \frac{1}{\varepsilon_0 \varepsilon_\infty} \frac{\partial \mathbf{P}_x}{\partial x} - \frac{1}{\varepsilon_0 \varepsilon_\infty} J_{q,x} \quad \text{(7)}
\]

\[
\frac{\partial \mathbf{E}_y}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_\infty} \left(\frac{\partial \mathbf{H}_z}{\partial x} - \frac{\partial \mathbf{H}_x}{\partial z} \right) - \frac{1}{\varepsilon_\infty} \frac{\partial \mathbf{Q}_y}{\partial y} - \frac{1}{\varepsilon_0 \varepsilon_\infty} \frac{\partial \mathbf{P}_y}{\partial y} - \frac{1}{\varepsilon_0 \varepsilon_\infty} J_{q,y} \quad \text{(8)}
\]

\[
\frac{\partial \mathbf{E}_z}{\partial t} = \frac{1}{\varepsilon_0 \varepsilon_\infty} \left(\frac{\partial \mathbf{H}_x}{\partial y} - \frac{\partial \mathbf{H}_y}{\partial x} \right) - \frac{1}{\varepsilon_\infty} \frac{\partial \mathbf{Q}_z}{\partial z} - \frac{1}{\varepsilon_0 \varepsilon_\infty} \frac{\partial \mathbf{P}_z}{\partial z} - \frac{1}{\varepsilon_0 \varepsilon_\infty} J_{q,z} \quad \text{(9)}
\]

\[
\frac{\partial \mathbf{H}_x}{\partial t} = \frac{1}{\mu} \left(\frac{\partial \mathbf{E}_y}{\partial z} - \frac{\partial \mathbf{E}_z}{\partial y} \right) \quad \text{(10)}
\]

\[
\frac{\partial \mathbf{H}_y}{\partial t} = \frac{1}{\mu} \left(\frac{\partial \mathbf{E}_z}{\partial x} - \frac{\partial \mathbf{E}_x}{\partial z} \right) \quad \text{(11)}
\]

\[
\frac{\partial \mathbf{H}_z}{\partial t} = \frac{1}{\mu} \left(\frac{\partial \mathbf{E}_x}{\partial y} - \frac{\partial \mathbf{E}_y}{\partial x} \right) \quad \text{(12)}
\]

The discretized form of the equations (7) to (9) is given as

\[
\mathbf{E}_x^{n+1}(i+\frac{1}{2}, j, k) = \frac{1}{\Omega_x} \mathbf{E}_x^n(i+\frac{1}{2}, j, k) + \Delta t \left[\frac{\mathbf{H}_x^{n+1}(i+\frac{1}{2}, j, k) - \mathbf{H}_x^n(i+\frac{1}{2}, j, k)}{\Delta t} + \mathbf{P}_x^n(i+\frac{1}{2}, j, k) \right] \quad \text{(13)}
\]
\(E_{n+1}^{x} (i,j+1/2,k) = \frac{1}{\Omega_{x}} E_{n}^{x} (i,j+1/2,k) \)

\[
\begin{aligned}
&+ \frac{\Delta t}{\Omega_{x} \epsilon_{0}} \left[\frac{H_{x}^{-1} (i,j+1/2,k+1/2)-H_{x}^{-1} (i,j+1/2,k-1/2)}{\Delta z} \right] \\
&- \frac{\Delta t}{2 \Omega_{x} \epsilon_{0}} \left[\frac{\alpha_{x} Q_{y}^{n} (i,j+1/2,k) + \beta_{x} E_{y}^{n} (i,j+1/2,k)}{\Delta x} \right] \\
&- \frac{1}{\Omega_{x} \epsilon_{0}} \left[\frac{\zeta_{x} E_{y}^{n} (i,j+1/2,k) + \tau_{x} p_{z}^{n} (i,j+1/2,k)}{\Delta y} \right] \\
&- \frac{1}{\Omega_{x} \epsilon_{0}} \left[\frac{\rho_{x} p_{y}^{n+1} (i,j+1/2,k+1/2) - \rho_{x} p_{y}^{n} (i,j+1/2,k-1/2)}{\Delta z} \right]
\end{aligned}
\]

(14)

\(E_{n+1}^{y} (i,j+1/2,k) = \frac{1}{\Omega_{y}} E_{n}^{y} (i,j+1/2,k) \)

\[
\begin{aligned}
&+ \frac{\Delta t}{\Omega_{y} \epsilon_{0}} \left[\frac{H_{y}^{-1} (i+1/2,j+1/2)-H_{y}^{-1} (i-1/2,j+1/2)}{\Delta z} \right] \\
&- \frac{\Delta t}{2 \Omega_{y} \epsilon_{0}} \left[\frac{\alpha_{y} Q_{x}^{n} (i+1/2,j,k) + \beta_{y} E_{x}^{n} (i+1/2,j,k)}{\Delta x} \right] \\
&- \frac{1}{\Omega_{y} \epsilon_{0}} \left[\frac{\zeta_{y} E_{x}^{n} (i+1/2,j,k) + \tau_{y} p_{z}^{n} (i+1/2,j,k)}{\Delta y} \right] \\
&- \frac{1}{\Omega_{y} \epsilon_{0}} \left[\frac{\rho_{y} p_{x}^{n+1} (i+1/2,j,k+1/2) - \rho_{y} p_{x}^{n} (i+1/2,j,k-1/2)}{\Delta z} \right]
\end{aligned}
\]

(15)

Equations (5) and (6) are discretized as

\[Q_{r+1}^{n} = \alpha_{r} Q_{r}^{n} + \beta_{r} E_{r+1}^{n} + E_{r}^{n} \]

(16)

\[P_{r+1}^{n} = \gamma_{r} (E_{r+1}^{n} + E_{r}^{n}) + \tau_{r} P_{r}^{n} - \rho_{r} P_{r-1}^{n} \]

(17)

where

\[
\begin{aligned}
\alpha_{r} &= \left(\frac{1 - \Delta t}{} \right) \frac{\Delta t}{\Delta t} \frac{1}{\epsilon_{0}}, \\
\beta_{r} &= \left(1 + \Delta t \right) \frac{1}{\epsilon_{0}} \frac{1}{\Delta t} \\
\gamma_{r} &= \left(\frac{\Delta t}{} \frac{\Delta t}{\epsilon_{0}} \frac{1}{\Delta t} \right) \\
\tau_{r} &= \left(\frac{\Delta t}{} \frac{\Delta t}{\epsilon_{0}} \frac{1}{\Delta t} \right) \\
\rho_{r} &= \left(\frac{\Delta t}{} \frac{\Delta t}{\epsilon_{0}} \frac{1}{\Delta t} \right)
\end{aligned}
\]

(18)

Equations (10) to (12) are similar to conventional magnetic field equations in FDTD method and are discritized as

\[H_{x}^{-1} (i,j+1/2,k+1/2) = H_{x}^{-1} (i,j+1/2,k-1/2) \]

\[
\begin{aligned}
&+ \frac{\Delta t}{\Omega_{x} \mu_{0}} \left[\frac{E_{y}^{n} (i,j+1/2,k) + E_{y}^{n} (i,j+1/2,k-1/2)}{\Delta x} \right] \\
&- \frac{\Delta t}{2 \Omega_{x} \mu_{0}} \left[\frac{\alpha_{x} Q_{y}^{n} (i,j+1/2,k) + \beta_{x} E_{y}^{n} (i,j+1/2,k)}{\Delta x} \right] \\
&- \frac{1}{\Omega_{x} \mu_{0}} \left[\frac{\zeta_{x} E_{y}^{n} (i,j+1/2,k) + \tau_{x} p_{z}^{n} (i,j+1/2,k)}{\Delta y} \right] \\
&- \frac{1}{\Omega_{x} \mu_{0}} \left[\frac{\rho_{x} p_{y}^{n+1} (i,j+1/2,k+1/2) - \rho_{x} p_{y}^{n} (i,j+1/2,k-1/2)}{\Delta z} \right]
\end{aligned}
\]

(19)

Equations (13) to (20) represent discretized form of the Maxwell equations (equation 13 to 15 with LD model and quantum current density) after applying the FDTD method. For quantum effects the time dependent Schrödinger equation is considered in the presence of external electromagnetic field and is written as

\[
\begin{aligned}
\frac{\hbar}{2m} \frac{\partial \Psi (r,t)}{\partial t} &= \left(\frac{1}{2m} \nabla^{2} - q A(r,t) + q \Phi (r,t) \right) \Psi (r,t)
\end{aligned}
\]

(20)

where \(\Psi \) is wavefunction, \(A \) is vector potential, \(\Phi \) is scalar potential, \(h = h/2\pi \), \(\hbar \) is Planck constant, \(q \) is charge, \(m \) is mass of an electron and \(r \) represents spatial variables \(x, y, \) and \(z \). The vector and scalar potentials are obtained from following equations

\[
\begin{aligned}
E &= - \frac{\delta A}{\delta t} - \nabla \Phi, \\
H &= \frac{1}{\mu} \nabla \times A
\end{aligned}
\]

(21)

The equation (21) is complex, and by using the relation \(\Psi (r,t) = \Psi_{R} (r,t) + i \Psi_{I} (r,t) \) and after some simplifications, it is separated into real and imaginary parts and is given as
After calculating the real and imaginary parts of the wavefunction, and then by using the following relation, the quantum current density is obtained.

\[
\Psi_{\bar{r}}^{n+1}(r) = \Psi_{\bar{r}}^{n}(r) - \frac{\hbar \Delta t}{2m} \frac{\partial^2 \Psi_{\bar{r}}^{n}(r)}{\partial t^2} + \frac{q^2 \Delta t}{2 \hbar m} \left(A^n(r) \right)^2 \Psi_{\bar{r}}^{n}(r) - \frac{q \Delta t}{2m} \frac{\partial A^n(r)}{\partial t} \Psi_{\bar{r}}^{n}(r) + \frac{\Delta t}{\hbar} \Phi^n(r) \Psi_{\bar{r}}^{n}(r) \tag{24}
\]

\[
\Psi_{\bar{r}}^{1+1}(r) = \Psi_{\bar{r}}^{1}(r) - \frac{\hbar \Delta t}{2m} \frac{\partial^2 \Psi_{\bar{r}}^{1}(r)}{\partial t^2} + \frac{q^2 \Delta t}{2 \hbar m} \left(A^n(r) \right)^2 \Psi_{\bar{r}}^{1}(r) - \frac{q \Delta t}{2m} \frac{\partial A^n(r)}{\partial t} \Psi_{\bar{r}}^{1}(r) + \frac{\Delta t}{\hbar} \Phi^n(r) \Psi_{\bar{r}}^{1}(r) \tag{25}
\]

After calculating the real and imaginary parts of the wavefunction, and then by using the following relation, the quantum current density is obtained.

\[
\Psi_{\bar{r}}^{n+1}(r) = \Psi_{\bar{r}}^{n}(r) - \frac{\hbar \Delta t}{2m} \frac{\partial^2 \Psi_{\bar{r}}^{n}(r)}{\partial t^2} + \frac{q^2 \Delta t}{2 \hbar m} \left(A^n(r) \right)^2 \Psi_{\bar{r}}^{n}(r) - \frac{q \Delta t}{2m} \frac{\partial A^n(r)}{\partial t} \Psi_{\bar{r}}^{n}(r) + \frac{\Delta t}{\hbar} \Phi^n(r) \Psi_{\bar{r}}^{n}(r) \tag{26}
\]

Spatial discretization of equations (24-26) and the corresponding term \(I_{q}^{n+1}(r) \) in equations (13-15) depends on the user how he/she want to implement these equations in one dimensional or three dimensional fashion. The meshing interface between Maxwell and Schrödinger equations also depends on the dimension of space and time discretization. We have used both 2D and 3D models with a mesh size of 100 meshes. The results obtained are similar to the generalized structure in Fig. 1. The structure for the first example is shown in Fig. 2(a). It consists of two gold nanospheres, each with a radius of 20 nm, with a gap of 10 nm in between them, and a 2 nm thick and 70 nm long semiconductor nanowire (NW) is placed at the center in between the nanospheres. The purpose of the structure is to study qubit properties and then compare it to the conventional approach. The cell size in each direction is uniform i.e. 2nm. To maintain the stability of the Schrödinger equation with the FDTD method, the time step should be smaller than the Courant-Friedrichs-Levy (CFL) limit of Maxwell equations [18]. Therefore, in the coupled approach, the time step of the Schrödinger equation is taken as the time step for whole simulation domain. We take time step 100 times smaller than the CFL limit to accommodate the NW, in other words, accuracy will also be better if the cell size is smaller. We have checked method with different grids and cell sizes and it is found that the proposed approach converges properly in addition there is no static bility issue, a long a t ime step for t he simulation domain is same a s that of Schrödinger equation. The parameters used for dispersive model are same as given in [17]. The surrounding medium of the structure is free space. A Gaussian pulse is used as a source to get field localization in between nanospheres and a Gaussian pulse at NW is used to excite the wave function. For different field excitation scenarios may arise during the simulation of the structure, I) excitation at a point generate field localization between nanospheres, II) source above or below the NW in the electromagnetic field into Schrödinger equation along the nanowire. In the simulation procedure, the magnetic field is updated first, the vector potential, scalar potential, wave function, quantum current density, and the electric field are updated and this sequence continues, until the last iteration.

3. Numerical Results

For numerical results two different examples that include dispersive and quantum effects are studied. A generalized structure in Fig. 1, in which semiconductor nanowires are used as inter connects between plasmonic nanodevices. The size of plasmonics devices can be from few nanometers to few hundred nanometers, whereas the size of inter connects can be few nanometers. For such applications in the paper we use LD dispersive model for large size components, whereas Schrödinger equation is used for quantum effects needed region.

Fig. 1: A generalized structure for coupled approach, in which plasmonic devices are interconnected via nanowires.

The structures studied in the paper have operating concept similar to the generalized structure in Fig. 1. The structure for the first example is shown in Fig. 2(a). It consists of two gold nanospheres, each with a radius of 20 nm, with a gap of 10 nm in between them, and a 2 nm thick and 70 nm long semiconductor nanowire (NW) is placed at the center in between the nanospheres. The purpose of the structure is to study qubit properties and then compare it to the conventional approach. The cell size in each direction is uniform i.e. 2nm. To maintain the stability of the Schrödinger equation with the FDTD method, the time step should be smaller than the Courant-Friedrichs-Levy (CFL) limit of Maxwell equations [18]. Therefore, in the coupled approach, the time step of the Schrödinger equation is taken as the time step for whole simulation domain. We take time step 100 times smaller than the CFL limit to accommodate the NW, in other words, accuracy will also be better if the cell size is smaller. We have checked method with different grids and cell sizes and it is found that the proposed approach converges properly in addition there is no static bility issue, a long a t ime step for t he simulation domain is same a s that of Schrödinger equation. The parameters used for dispersive model are same as given in [17]. The surrounding medium of the structure is free space. A Gaussian pulse is used as a source to get field localization in between nanospheres and a Gaussian pulse at NW is used to excite the wave function. For different field excitation scenarios may arise during the simulation of the structure, I) excitation at a point generate field localization between nanospheres, II) source above or below the NW in the
surrounding medium, III) use of quantum current density as a source, IV) combination of the above scenarios.

Figure 2 (b) shows snapshot of field localization in between nanospheres without having the NW in the xy plane, whereas Fig. 2 (c) depicts the snapshot of the total electric field intensity in the xy plane with nanowire. These both snapshots are obtained at steady state. In this application the excitation scenario (I) is used. Results show that most of the field is confined along the NW. Figure 2(d) shows the field intensity with and without Schrödinger equation with respect to number of time steps and depicts the difference between both circumstances. Figure 2 (e) is plotted with respect to energy (eV) with and without quantum effects. The difference of 0.16 eV is observed. The field observation point is at 26 nm away from the center of nanospheres and 12 nm left from the center of the NW. These results illustrate the clear difference between coupled and conventional approaches. The possible reason of the difference between the results of both approaches is quantum effect. Because in the case of coupled approach, the quantum current density takes into account, kinetic and potential energies of electrons, vector and scalar potentials. Inclusion of these factors is use of shift in the field intensity in Fig. 2 (d and e). It is also observed that if the structure is made of bulk materials, then there is no difference in the numerical results of both approaches, and it is validation of the proposed approach.

The structure of second example is shown in Fig. 3 (a), in which two pairs of gold nanospheres are placed at both ends of the nanowire. The thickness and length of the NW, radius and distance between nanospheres is same as in example 1 at first, however, latter on the distance between nanospheres is varied.

![Fig. 2: (a) Structure for example 1, (b) Field intensity in the xy plane without nanowire (c) Field intensity in the xy plane with nanowire (d) Normalized magnetic field intensity with and without Schrödinger equation (e) Normalized field with respect to energy (eV).](image-url)
NW. The reason of stronger field at NW in the second case is due to two sources i.e. at each end of the wire and this causes resonance for longer time.

![Diagram](image)

Fig. 3: (a) Structure for example 2, (b) Electric field at NW with localized field at one end and localized field at both ends of the nanowire.

These structures may have number of applications in different areas such as biosensing, e.g. heating and blood sample analysis. Because of comparatively longer and stronger field oscillations, second example can be used for blood or liquid analysis more effectively as compared to the example 1. Figure 4 denotes the normalized field pattern for structure 3(a). In this case three different excitation sources are used, localized fields at both ends between nanospheres, and third close to the center of the NW. The field pattern in Fig. 4 (a) is captured during the transient state of the method, where a small value at the center of the NW shows the excitation of the wavefunction. Figures 4 (b) and 4 (c) show the electric and magnetic field patterns for same structure at steady state respectively. These field patterns describe that at steady state most of the field concentrates along the NW. However, the field values become weaker with the passage of time due to field radiation in the surrounding media. These patterns are captured when the gap distance between the nanospheres is 10 nm. Nonetheless, the patterns and results are as observed for variable distance between nanospheres, and observed the similar phenomena but with different field intensities. Figure 5 shows the field pattern with and without incorporating the Schrödinger equation. Figure 5 (a) indicates the electric field intensity at NW with respect to number of time steps, dotted line shows the result without quantum effects and the solid line with quantum effects. Figure 5 (b) indicates the corresponding values of the electric field with respect to energy (eV).

![Diagram](image)

Fig. 4: Field pattern in the xy plane for structure 3 (a), (a) Field localization at transient state between nanospheres at both ends of NW and a third source is below and close to the center of NW (b) Electric field pattern at steady state, (c) Magnetic field pattern at steady state.
It shows that the dominant mode with quantum effects is at 21.96 eV, while without quantum effects is at 22.65 eV, and the difference of 0.69 eV is observed. The same results are observed at a point on NW, when the distance between nanospheres is 5 nm. This plot shows that the field values near to 0 eV with quantum effects is smoother, as compared to the other curve (without quantum effect) that shows some abnormality, and the reason is absence of quantum effects. The proposed approach may have potential applications in the fields of active nano-plasmonics, optoelectronics, integration of nano-plasmonics and nano-electronics, and nano-sensors.

Fig. 5: Field plot for structure 3(a), (a) Electric field with respect to number of time steps with and without Schrödinger equation, b) Electric field with respect to energy (eV) with and without Schrödinger equation.

4. Conclusion

An approach that couples time-dependent Schrödinger and LD dispersive model incorporating Maxwell equations is developed and implemented for plasmonics nanodevices and the FDTD method is applied for analysis. The approach is applied to structures that involve both dispersive and quantum effects. Results are compared with and without quantum effects and the difference is observed among them. However, both approaches did not show any difference in numerical results for bulk materials. The proposed approach paves the way for modeling and simulation of nanodevices in the wide spectrum of electromagnetics, and where quantum effects are needed.

REFERENCES

