Broadband impedance spectroscopy of some Li$^+$ and V0* conducting solid electrolytes

Antanas Feliksaus Orliukas1, Odile Bohnke2, Algimantas Kežionis1, Saulius Kazlauskas1, Vilma Vencikūtė1, Dalius Petrunišis1, Tomas Žukauskas1, Tomas Šalkus1, Antonija Dindune3, Zaiga Kanepē3, Janis Ronis3, Vytautas Kunigēlis1

1Faculty of Physics, Vilnius University, Saulėtekio al. 9/3, LT-10222 Vilnius, Lithuania
2 Laboratoire des Oxyles et Fluorures UMR 6010 CNRS Institut des Molécules et Matériaux du Mans (I3M) Université du Maine, Avenue Olivier Messiaen 72085 Le Mans Cedex 9
3 Institute of Inorganic Chemistry, Riga Technical University, Miera iela 34, 2169 Salaspils, Latvia
*corresponding author, E-mail: tomas.salkus@ff.vu.lt

Abstract
The solid electrolyte Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ compound has been synthesized by solid state reaction and studied by X-ray diffraction. At room temperature the compound belongs to rhombohedral symmetry (space group R3c) with six formula units in the unit cell. Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, Li$_{3x}$La$_{2/3}$TiO$_3$ (where x = 0.12) Li$^+$ ion conducting, Ce$_{0.2}$Gd$_{0.8}$O$_{1.9}$, (ZrO$_2$)$_{0.5}$(Y$_2$O$_3$)$_{0.5}$ with fast oxygen vacancy transport ceramic samples were investigated in the frequency range from 1 Hz to 3 GHz in the temperature interval (300-700) K by impedance spectroscopy methods. Two dispersion regions in ionic conductivity spectra for investigated ceramic samples have been found. The dispersions have been attributed to relaxation processes in grain boundaries and in grains of the ceramics.

1. Introduction
The development of fast lithium conductors is attracting much attention because of their potential applications in electrochemical devices such as high-energy lithium ion batteries and electrochemical gas sensors. Li$_3$La$_{2/3}$TiO$_3$ (LLTO) is known as a fast Li$^+$ ion conductor [1, 2]. LLTO has ABO$_3$ perovskite-type structure. The unit cell is built of TiO$_6$ octahedra and A-cages are formed by 12 oxygen ions belonging to 8 octahedra [3, 4]. La$^{3+}$ is unequally distributed in the structure forming La-rich and La-poor layers, which open paths for Li$^+$ migration [4]. The compound Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, with NASICON-type framework structure is a pure ionic conductor, its bulk ionic conductivity $\sigma_b = 10^{-4}$ S/m at room temperature [5]. Conductivity increases then Ti$^{4+}$ is partially substituted by three valence state ions in NASICON – type framework [6]. Today, cubic structure zirconia-based materials such as Zr$_{0.85}$Ce$_{0.15}$O$_{1.95}$ (15CSZ), (ZrO$_2$)$_{0.5}$(Y$_2$O$_3$)$_{0.5}$ (YSZ10), (ZrO$_2$)$_{0.5}$(Y$_2$O$_3$)$_{0.5}$ (YSZ8), Ce$_{0.2}$Gd$_{0.8}$O$_{1.9}$ (GDC20) with fast oxygen vacancy transport are used for variety of applications, namely oxygen gas sensors, as well as for solid oxide fuel cells (SOFC) [7]. Furthermore, the above mentioned Li$^+$ and V0* conducting solid electrolytes do not undergo any phase transition in the temperature range from room to 1000 K and therefore they are also interesting candidates for ionic dynamics’ studies in the broad frequency range of the electric field. In the present work we present investigation results of electrical properties of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, Li$_{3x}$La$_{2/3}$TiO$_3$ (with stoichiometric factor x = 0.12), YSZ8, and GDC20 ceramics in the frequency range (1-3×105) Hz in the temperature range (300-700) K by impedance spectroscopy methods. The preparation conditions of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ powder and ceramics, the results of the X-ray diffraction (XRD) study are presented in the paper too.

2. Experiment
The powder of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ has been synthesized from stoichiometric mixture of Li$_2$CO$_3$ (purity 99.999 %), extra pure NH$_4$H$_2$PO$_4$ and TiO$_2$ by solid state reaction. The mixture with stoichiometric amounts was placed in ethyl alcohol and milled 8 hours in an agate mill. After milling the mixture was heated for 20 h at temperature T = 723 K. After heating the mixture was placed in the ethyl alcohol and this liquid was milled 8 h in the planetary mill again. After this process the powder was heated for 8 h at T = 1173 K. The fine powder was dried at T = 393 K for 24 h. The structure parameters were obtained using Bruker D8 Advance equipment at room temperature from the X-ray powder diffraction patterns in the region 2\theta = 6-80 degree, step 0.02 degree, time per step 1-8 sec., CuK$_{\alpha}$ radiation (40 kV, 40 mA). The lattice parameters were deduced by fitting the XRD patterns with software TOPAS. For investigation of electrical properties the ceramic samples were sintered. The powder was uniaxially cold-pressed at 300 MPa. The sintering of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ ceramic samples was conducted in air at T = 923 K. The sintering duration of the ceramics was 1 h. The density of so sintered Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ ceramic samples was $\rho = 2.48$ g/cm3.

The conditions of the preparation of LLTO powder can be found elsewhere [8]. To obtain LLTO (x = 0.12) ceramics with grain sizes in the range of micrometers conventional
solid state reaction was used and the obtained powder has been pressed and sintered at 1523 K for 2 h. In the current work we name this sample as LLTO - SSR. A modified Pechini-type complex polymerizable method was used to obtain LLTO (x = 0.12) powder with grains in the nanometer range (20 – 30 nm). Ceramic samples from nanopowders have been sintered in this way: The pressed pellets were introduced into hot oven (1373 K), kept for 3 min and quenched to room temperature. Such procedure leads to formation of dense ceramics (relative density was more than 90 %) with limited grain growth. In our current work we name nano-ceramics as LLTO - P.

YSZ8 and GDC20 ceramics have been sintered at 1773 K for 2 h using the fine powder from Fuel Cell Materials.

The measurements of complex conductivity (\(\sigma = \sigma' + i\sigma'' \)), complex specific electrical resistivity (\(\rho = \rho' - i\rho'' \)), and complex dielectric permittivity (\(\varepsilon = \varepsilon' - i\varepsilon'' \)) were performed in temperature range from 300 K to 700 K. Platinum electrodes were prepared on investigated samples by applying Pt paste (GVENT Electronic Materials LTD) on hot pressed pellets. The measurements of electrical impedance in the frequency range (1-1 \(\times \) 10⁶ Hz) four-probe method was used. For measurements of electrical impedance in the frequency range (3-10⁵-3-10⁷ Hz) were performed by Agilent Network Analyzer E5062A connected to coaxial line, the part of inner conductor of which was replaced by the sample. The impedance of the sample was calculated from scattering parameters' matrix of two port network as in [9]. The temperature of investigated materials in the low and high frequency ranges was measured by K-type thermocouple.

3. Discussion

Fig. 1 shows powder X-ray diffraction patterns of \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \) prepared by solid state reaction. A small amount (up to 1.5 %) of \(\text{LiTiO}_2 \) and \(\text{Li}_4\text{P}_2\text{O}_7 \) were detected as impurities and are marked in Fig. 1. At room temperature \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \) compound belongs to the rhombohedral symmetry (space group R\(\bar{3} \)c) with six formula units in the unit cell. The lattice parameters, unit cell volume (V) and theoretical density (\(d_t \)) of the investigated compounds are presented in Table 1.

The impedance spectroscopy investigation of ion-conducting ceramics in the wide frequency and in the broad temperature ranges allows one to separate charge carrier transport processes in grains and in grain boundaries of the ceramics.

Table 1: Summary of X-ray diffraction results for \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \) compounds at room temperature.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Symmetry and space group</th>
<th>(a), Å</th>
<th>(c), Å</th>
<th>(V), Å³</th>
<th>(Z)</th>
<th>(d_t), g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Li}{3}\text{Ti}{1.5}(\text{PO}_4)_3)</td>
<td>Rhombohedral (R(\bar{3})c)</td>
<td>8.5150</td>
<td>20.8755</td>
<td>1310.80</td>
<td>6</td>
<td>2.85</td>
</tr>
</tbody>
</table>

In Fig. 2 (a), (b), and (c) the characteristic frequency dependences of the real part (\(\sigma' \)) of complex conductivity of \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \), LLTO, YSZ8, and GDC20 ceramics measured at different temperatures are shown. Two dispersion regions in \(\sigma' \) spectra for investigated ceramic samples were found. All the processes are thermally activated and dispersion regions shift towards higher frequencies as temperature increases. As it is generally observed in solid electrolyte ceramics [10–15], the high frequency part of the recorded spectra may be attributed to the \(\text{Li}^+ \)-ion or \(V_{o}^* \) relaxation processes in grains, while the lower frequency part corresponds to relaxation processes in grain boundaries. Temperature dependences of total conductivity (\(\sigma_{tot} \)) of the ceramics were derived from dependences of \(\sigma'(f) \) measured by four probe method at different temperatures. The temperature dependences of bulk conductivity (\(\sigma_b \)) of the ceramic samples were derived from the complex plots of \(\rho'(\rho') \) and \(\sigma'(\sigma') \) measured in microwave region at different temperatures. In Fig. 3(a), (b) and (c) the typical complex specific electrical resistivity plots of \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \), LLTO ceramic samples at 300 K and YSZ8, GDC20 ceramics at 600 K are shown.

Temperature dependences of \(\sigma_{tot} \) and \(\sigma_b \) of \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \), LLTO, YSZ8, and GDC20 ceramic samples are shown in Fig. 4 (a), (b). The activation energies of \(\sigma_{tot} \) and \(\sigma_b \) were found from the slopes of the Arrhenius plots. Table 2 summarizes our experimental results of the investigation of \(\sigma_{tot} \), \(\sigma_b \) and their activation energies \(\Delta E_{act} \), \(\Delta E_{ob} \).

![Figure 1: X-ray powder diffraction pattern of \(\text{Li}_{3}\text{Ti}_{1.5}(\text{PO}_4)_3 \). Numbers above the peaks are Miller indices.](image-url)
Figure 2: Frequency dependences of the real part of conductivity measured at different temperatures of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ (a), LLTO - P and LLTO - SSR (b), and 8YSZ (c) ceramics.

Figure 3: High frequency impedance complex plain plots of: Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ at 300 K (a), LLTO at 300 K (b), and YSZ8, GDC20 at 600 K (c).

Table 2: $\sigma_{\text{me}}, \sigma_{\text{b}}$, their activation energies and the activation energy of the relaxation frequency in bulk of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, LLTO ceramic samples at 400 K and GDC20, YSZ8 ceramic samples at 600 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\sigma_{\text{me}}, \text{S/m}$</th>
<th>$\Delta E_{\sigma_{\text{me}}}, \text{eV}$</th>
<th>$\sigma_{\text{b}}, \text{S/m}$</th>
<th>$\Delta E_{\sigma_{\text{b}}}, \text{eV}$</th>
<th>$\Delta E_{\text{f}}, \text{eV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li3Ti${1.5}$(PO$_4$)$_3$</td>
<td>0.32</td>
<td>0.30</td>
<td>0.02</td>
<td>0.19</td>
<td>0.25</td>
</tr>
<tr>
<td>LLTO - SSRR</td>
<td>2.1</td>
<td>0.41</td>
<td>0.19</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>LLTO - P</td>
<td>1.4</td>
<td>0.42</td>
<td>0.015</td>
<td>0.25</td>
<td>0.27</td>
</tr>
<tr>
<td>GDC20</td>
<td>0.0035</td>
<td>1.12</td>
<td>0.0018</td>
<td>0.87</td>
<td>0.93</td>
</tr>
<tr>
<td>YSZ8</td>
<td>8.1×10^{-4}</td>
<td>1.03</td>
<td>0.9013</td>
<td>0.90</td>
<td>1.1</td>
</tr>
</tbody>
</table>
In $\text{Li}_3\text{Ti}_{1.5}(\text{PO}_4)_3$ and LLTO compounds the temperature dependences of the conductivity is caused by Li^+ ion mobility increase in the materials and in YSZ8 and GDC20 ceramics – by oxygen vacancy mobility which increases as temperature increases. A slight difference of the bulk conductivities and their activation energies can be observed from Fig. 4 when comparing both LLTO samples. These differences probably appear because of different heat treatment of the samples which leads to rearrangement of La-rich and La-poor layers in LLTO. On the other hand, a very big difference can be seen between total ionic conductivities of LLTO - P and LLTO - SSR samples. This feature is typical for LLTO ceramics, for which the total conductivity is lowered because of the low conductivity of boundaries between the ceramic’s grains.

From the maxima of $\rho''(f)$ (Fig. 5), Maxwell relaxation frequency ($f_M = \sigma_0/2\pi\epsilon_0\epsilon_r$, where $\epsilon_0 = 8.85 \times 10^{-12}$ F/m is dielectric constant) was determined at different temperatures, as described previously in [14-16].

As we can see from the temperature dependences of Maxwell relaxation frequency, it follows Arrhenius law (Fig. 6). The activation energies of f_M (ΔE_f) are presented in Table 2.
Dielectric permittivity (ε') and dielectric losses ($\tan \delta$) were calculated at the frequency of 1 GHz. This frequency is much higher than Maxwell relaxation frequency in all studied temperatures. At 300 K the values of f_{50}, ε' and $\tan \delta$ of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, LLTO, GDC20, and YSZ8 ceramics are summarized in Table 3. Temperature dependences of $\tan \delta$ of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, LLTO, GDC20, and YSZ8 ceramics are shown in Fig. 7. The increase of the values of ε' with temperature of the investigated compounds can be caused by contribution of the migration polarization of ionic charge carries, vibration of lattice and electronic polarization. The increase of $\tan \delta$ with temperature is related to the contribution of conductivity in the investigated temperature region.

Table 3: ε', $\tan \delta$, f_{M} of ceramic samples measured at 300 K.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ε'</th>
<th>$\tan \delta$</th>
<th>f_{M}, MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li3Ti${1.5}$(PO$_4$)$_3$</td>
<td>11</td>
<td>0.12</td>
<td>84</td>
</tr>
<tr>
<td>LLTO - SSR</td>
<td>187</td>
<td>0.098</td>
<td>11</td>
</tr>
<tr>
<td>LLTO - P</td>
<td>176</td>
<td>0.12</td>
<td>8.6</td>
</tr>
<tr>
<td>GDC20</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YSZ8</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: Temperature dependences of dielectric losses of LLTO, Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, GDC20, and YSZ8 ceramics.

4. Conclusions

At room temperature solid electrolyte Li$_3$Ti$_{1.5}$(PO$_4$)$_3$ compound belongs to rhombohedral symmetry (space group R3c) with six formula units in the unit cell. Dense ceramic samples of Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, Li$_{2/3}$La$_{2/3}$TiO$_3$ ($x = 0.12$), Ce$_{0.2}$Gd$_{0.8}$O$_{2.9}$, and (ZrO$_2$)$_{0.8}$(Y$_2$O$_3$)$_{0.2}$ have been sintered for electrical investigations. In the frequency range 1 Hz – 1 MHz four-probe method was used to determine total ionic conductivity of the ceramics. In some cases it is difficult to separate total ionic conductivity of the material from the processes appearing in the metal-solid electrolyte interface. Four-probe method gives us the impedance spectra with no contribution of the electrodes used to contact the samples. For the measurements in the microwave range (3-105–3-109 Hz) the coaxial line technique was used. The relaxation dispersions in the microwave frequencies have been attributed to ionic relaxation processes in the bulk of ceramics. Temperature dependences of bulk ionic conductivity is caused by ionic mobility in Li$_3$Ti$_{1.5}$(PO$_4$)$_3$, LLTO, GDC20, and YSZ8 compounds which also causes the increase of dielectric losses ($\tan \delta$) with temperature. High measurement frequency of the electrical field (which was much higher than Maxwell relaxation frequency) allowed us to determine dielectric permittivity values of the materials. ε' values of the investigated compounds are caused by contribution of the migration polarization of ionic charge carries, vibration of lattice and electronic polarization.

Acknowledgements

This work was supported by Research Council of Lithuania, Project No. TAP LLT 03/2012.

References

Zr$_{0.85}$Ca$_{0.15}$O$_{1.85}$ single crystal, *J. Europ. Ceramic Soc.* 12: 87–96, 1993.

[13] T. Šalkus, A. Dindune, Z. Kanepe, J. Ronis, A. Určinskas, A. Kežionis, A.F. Orliukas, Lithium ion conductors in the system Li$_{1-x}$Ge$_{2-x}$Ti$_x$Al$_x$(PO$_4$)$_3$ (where $x = 0.1 \pm 0.3$, $y = 0.07 \pm 0.21$), *Solid State Ionics* 178: 1282–1287, 2007.

